74 research outputs found

    Reference Profile Correlation Reveals Estrogen-like Trancriptional Activity of Curcumin

    Get PDF
    Background: Several secondary metabolites from herbal nutrient products act as weak estrogens (phytoestrogens), competing with endogenous estrogen for binding to the estrogen receptors and inhibiting steroid converting enzymes. However, it is still unclear whether these compounds elicit estrogen dependent transcription of genes at physiological concentrations. Methods: We compare the effects of physiological concentrations (100 nM) of the two phytoestrogens Enterolactone and Quercetin and the suspected phytoestrogen Curcumin on gene expression in the breast cancer cell line MCF7 with the effects elicited by 17-beta-estradiol (E2). Results: All three phytocompounds have weak effects on gene transcription; most of the E2 genes respond to the phytoestrogens in the same direction though to a much lesser extent and in the order Curcumin > Quercetin > Enterolactone. Gene regulation induced by these compounds was low for genes strongly induced by E2 and similar to the latter for genes only weakly regulated by the classic estrogen. Of interest with regard to the treatment of menopausal symptoms, the survival factor Birc5/survivin and the oncogene MYBL1 are strongly induced by E2 but only marginally by phytoestrogens. Conclusion: This approach demonstrates estrogenic effects of putative phytoestrogens at physiological concentrations and shows, for the first time, estrogenic effects of Curcumin. Copyright (C) 2010 S. Karger AG, Base

    The Role of Curcumin in Prevention and Management of Metastatic Disease

    Get PDF
    In the last two decades, targeted therapies have enhanced tumor patient care and treatment success, however, metastatic growth still cannot be stopped efficiently and, therefore, mortality rates remain high. Prevention strategies against formation of metastases are the most promising approach we have, however, due to lack of clinical validation studies, they have not yet entered routine clinical care. In order to smooth the way for efficient prevention, further preclinical and large clinical studies are required. In this context, the underlying molecular mechanisms and factors that lead to metastatic growth have to be explored, and potential preventive agents have to be tested. Thereby, special attention has to be paid to natural bioactive compounds which do not exert major adverse effects, like the plant-derived polyphenol Curcumin, which is known to be a powerful antitumor agent. So far, most of the preclinical studies with Curcumin have focused on its effect on inhibiting tumor cell proliferation and invasion, although, it is known that it also inhibits metastatic spread in vivo. This review discusses the preventive potential of this natural compound not only against tumor onset, but also against formation of metastases

    Electron Self Energy for the K and L Shell at Low Nuclear Charge

    Get PDF
    A nonperturbative numerical evaluation of the one-photon electron self energy for the K- and L-shell states of hydrogenlike ions with nuclear charge numbers Z=1 to 5 is described. Our calculation for the 1S state has a numerical uncertainty of 0.8 Hz in atomic hydrogen, and for the L-shell states (2S and 2P) the numerical uncertainty is 1.0 Hz. The method of evaluation for the ground state and for the excited states is described in detail. The numerical results are compared to results based on known terms in the expansion of the self energy in powers of (Z alpha).Comment: 21 pages, RevTeX, 5 Tables, 6 figure

    Development of Resistance towards Artesunate in MDA-MB-231 Human Breast Cancer Cells

    Get PDF
    Breast cancer is the most common cancer and the second leading cause of cancer death in industrialized countries. Systemic treatment of breast cancer is effective at the beginning of therapy. However, after a variable period of time, progression occurs due to therapy resistance. Artesunate, clinically used as anti-malarial agent, has recently revealed remarkable anti-tumor activity offering a role as novel candidate for cancer chemotherapy. We analyzed the anti-tumor effects of artesunate in metastasizing breast carcinoma in vitro and in vivo. Unlike as expected, artesunate induced resistance in highly metastatic human breast cancer cells MDA-MB-231. Likewise acquired resistance led to abolishment of apoptosis and cytotoxicity in pre-treated MDA-MB-231 cells. In contrast, artesunate was more cytotoxic towards the less tumorigenic MDA-MB-468 cells without showing resistance. Unraveling the underlying molecular mechanisms, we found that resistance was induced due to activation of the tumor progression related transcription factors NFΞΊB and AP-1. Thereby transcription, expression and activity of the matrix-degrading enzyme MMP-1, whose function is correlated with increased invasion and metastasis, was up-regulated upon acquisition of resistance. Additionally, activation of the apoptosis-related factor NFΞΊB lead to increased expression of ant-apoptotic bcl2 and reduced expression of pro-apoptotic bax. Application of artesunate in vivo in a model of xenografted breast cancer showed, that tumors growth was not efficiently abolished as compared to the control drug doxorubicin. Taken together our in vitro and in vivo results correlate well showing for the first time that artesunate induces resistance in highly metastatic breast tumors

    Loss of NK Stimulatory Capacity by Plasmacytoid and Monocyte-Derived DC but Not Myeloid DC in HIV-1 Infected Patients

    Get PDF
    Dendritic cells (DC) are potent inducers of natural killer (NK) cells. There are two distinct populations in blood, myeloid (mDC) and plasmacytoid (pDC) but they can also be generated In vitro from monocytes (mdDC). Although it is established that blood DC are lost in HIV-1 infection, the full impact of HIV-1 infection on DC-NK cell interactions remains elusive. We thus investigated the ability of pDC, mDC, and mdDC from viremic and anti-retroviral therapy-treated aviremic HIV-1+ patients to stimulate various NK cell functions. Stimulated pDC and mdDC from HIV-1+ patients showed reduced secretion of IFN-Ξ± and IL-12p70 respectively and their capacity to stimulate expression of CD25 and CD69, and IFN-Ξ³ secretion in NK cells was also reduced. pDC activation of NK cell degranulation in response to a tumour cell line was severely reduced in HIV-1+ patients but the ability of mDC to activate NK cells was not affected by HIV-1 infection, with the exception of HLA-DR induction. No differences were observed between viremic and aviremic patients indicating that anti-retroviral therapy had minimal effect on restoration on pDC and mdDC-mediated activation of NK cells. Results from this study provide further insight into HIV-1 mediated suppression of innate immune functions

    Impact of HIV on Cell Survival and Antiviral Activity of Plasmacytoid Dendritic Cells

    Get PDF
    Plasmacytoid dendritic cells (pDCs) are important mediators of innate immunity that act mainly through secretion of interferon (IFN)-Ξ±. Previous studies have found that these cells can suppress HIV in vitro; additionally, pDCs have been shown to be severely reduced in the peripheral blood of HIV-infected individuals. In the present study, we sought to determine the ability of pDCs to directly suppress viral replication ex vivo and to delineate the potential mechanisms whereby pDCs are depleted in HIV-infected individuals. We demonstrate that activated pDCs strongly suppress HIV replication in autologous CD4(+) T cells via a mechanism involving IFN-Ξ± as well as other antiviral factors. Of note, unstimulated pDCs from infected individuals who maintain low levels of plasma viremia without antiretroviral therapy were able to suppress HIV ex vivo via a mechanism requiring cell-to-cell contact. Our data also demonstrate that death of pDCs by both apoptosis and necrosis is induced by fusion of HIV with pDCs. Taken together, our data suggest that pDCs play an important role in the control of HIV replication and that high levels of viral replication in vivo are associated with pDC cell death via apoptosis and necrosis. Elucidation of the mechanism by which pDCs suppress HIV replication in vivo may have clinically relevant implications for future therapeutic strategies

    Screening a Peptide Library by DSC and SAXD: Comparison with the Biological Function of the Parent Proteins

    Get PDF
    We have recently identified the membranotropic regions of the hepatitis C virus proteins E1, E2, core and p7 proteins by observing the effect of protein-derived peptide libraries on model membrane integrity. We have studied in this work the ability of selected sequences of these proteins to modulate the LΞ²-LΞ± and LΞ±-HII phospholipid phase transitions as well as check the viability of using both DSC and SAXD to screen a protein-derived peptide library. We demonstrate that it is feasible to screen a library of peptides corresponding to one or several proteins by both SAXD and DSC. This methodological combination should allow the identification of essential regions of membrane-interacting proteins which might be implicated in the molecular mechanism of membrane fusion and/or budding

    Tuning Curvature and Stability of Monoolein Bilayers by Designer Lipid-Like Peptide Surfactants

    Get PDF
    This study reports the effect of loading four different charged designer lipid-like short anionic and cationic peptide surfactants on the fully hydrated monoolein (MO)-based Pn3m phase (Q224). The studied peptide surfactants comprise seven amino acid residues, namely A6D, DA6, A6K, and KA6. D (aspartic acid) bears two negative charges, K (lysine) bears one positive charge, and A (alanine) constitutes the hydrophobic tail. To elucidate the impact of these peptide surfactants, the ternary MO/peptide/water system has been investigated using small-angle X-ray scattering (SAXS), within a certain range of peptide concentrations (R≀0.2) and temperatures (25 to 70Β°C). We demonstrate that the bilayer curvature and the stability are modulated by: i) the peptide/lipid molar ratio, ii) the peptide molecular structure (the degree of hydrophobicity, the type of the hydrophilic amino acid, and the headgroup location), and iii) the temperature. The anionic peptide surfactants, A6D and DA6, exhibit the strongest surface activity. At low peptide concentrations (Rβ€Š=β€Š0.01), the Pn3m structure is still preserved, but its lattice increases due to the strong electrostatic repulsion between the negatively charged peptide molecules, which are incorporated into the interface. This means that the anionic peptides have the effect of enlarging the water channels and thus they serve to enhance the accommodation of positively charged water-soluble active molecules in the Pn3m phase. At higher peptide concentration (Rβ€Š=β€Š0.10), the lipid bilayers are destabilized and the structural transition from the Pn3m to the inverted hexagonal phase (H2) is induced. For the cationic peptides, our study illustrates how even minor modifications, such as changing the location of the headgroup (A6K vs. KA6), affects significantly the peptide's effectiveness. Only KA6 displays a propensity to promote the formation of H2, which suggests that KA6 molecules have a higher degree of incorporation in the interface than those of A6K

    Calcium Triggered LΞ±-H2 Phase Transition Monitored by Combined Rapid Mixing and Time-Resolved Synchrotron SAXS

    Get PDF
    BACKGROUND: Awad et al. reported on the Ca(2+)-induced transitions of dioleoyl-phosphatidylglycerol (DOPG)/monoolein (MO) vesicles to bicontinuous cubic phases at equilibrium conditions. In the present study, the combination of rapid mixing and time-resolved synchrotron small-angle X-ray scattering (SAXS) was applied for the in-situ investigations of fast structural transitions of diluted DOPG/MO vesicles into well-ordered nanostructures by the addition of low concentrated Ca(2+) solutions. METHODOLOGY/PRINCIPAL FINDINGS: Under static conditions and the in absence of the divalent cations, the DOPG/MO system forms large vesicles composed of weakly correlated bilayers with a d-spacing of approximately 140 A (L(alpha)-phase). The utilization of a stopped-flow apparatus allowed mixing these DOPG/MO vesicles with a solution of Ca(2+) ions within 10 milliseconds (ms). In such a way the dynamics of negatively charged PG to divalent cation interactions, and the kinetics of the induced structural transitions were studied. Ca(2+) ions have a very strong impact on the lipidic nanostructures. Intriguingly, already at low salt concentrations (DOPG/Ca(2+)>2), Ca(2+) ions trigger the transformation from bilayers to monolayer nanotubes (inverted hexagonal phase, H(2)). Our results reveal that a binding ratio of 1 Ca(2+) per 8 DOPG is sufficient for the formation of the H(2) phase. At 50 degrees C a direct transition from the vesicles to the H(2) phase was observed, whereas at ambient temperature (20 degrees C) a short lived intermediate phase (possibly the cubic Pn3m phase) coexisting with the H(2) phase was detected. CONCLUSIONS/SIGNIFICANCE: The strong binding of the divalent cations to the negatively charged DOPG molecules enhances the negative spontaneous curvature of the monolayers and causes a rapid collapsing of the vesicles. The rapid loss of the bilayer stability and the reorganization of the lipid molecules within ms support the argument that the transition mechanism is based on a leaky fusion of the vesicles
    • …
    corecore