3,021 research outputs found

    Model Experiments in 1990 and On-Site Validation in 1992 of the Air Movement in the Danish Pavilion in Seville

    Get PDF

    Universal Quantum Computation with Continuous-Variable Cluster States

    Get PDF
    We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quantum computation, a nonlinear element is required. This can be satisfied by adding to the toolbox any single-mode non-Gaussian measurement, while the initial cluster state itself remains Gaussian. Homodyne detection alone suffices to perform an arbitrary multi-mode Gaussian transformation via the cluster state. We also propose an experiment to demonstrate cluster-based error reduction when implementing Gaussian operations.Comment: 4 pages, no figure

    Identification of a residue in hepatitis C virus E2 glycoprotein that determines scavenger receptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies.

    Get PDF
    Hepatitis C virus (HCV) infection is dependent on at least three coreceptors: CD81, scavenger receptor BI (SR-BI), and claudin-1. The mechanism of how these molecules coordinate HCV entry is unknown. In this study we demonstrate that a cell culture-adapted JFH-1 mutant, with an amino acid change in E2 at position 451 (G451R), has a reduced dependency on SR-BI. This altered receptor dependency is accompanied by an increased sensitivity to neutralization by soluble CD81 and enhanced binding of recombinant E2 to cell surface-expressed and soluble CD81. Fractionation of HCV by density gradient centrifugation allows the analysis of particle-lipoprotein associations. The cell culture-adapted mutation alters the relationship between particle density and infectivity, with the peak infectivity occurring at higher density than the parental virus. No association was observed between particle density and SR-BI or CD81 coreceptor dependence. JFH-1 G451R is highly sensitive to neutralization by gp-specific antibodies, suggesting increased epitope exposure at the virion surface. Finally, an association was observed between JFH-1 particle density and sensitivity to neutralizing antibodies (NAbs), suggesting that lipoprotein association reduces the sensitivity of particles to NAbs. In summary, mutation of E2 at position 451 alters the relationship between particle density and infectivity, disrupts coreceptor dependence, and increases virion sensitivity to receptor mimics and NAbs. Our data suggest that a balanced interplay between HCV particles, lipoprotein components, and viral receptors allows the evasion of host immune responses

    DNA-nanostructure-assembly by sequential spotting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to create nanostructures with biomolecules is one of the key elements in nanobiotechnology. One of the problems is the expensive and mostly custom made equipment which is needed for their development. We intended to reduce material costs and aimed at miniaturization of the necessary tools that are essential for nanofabrication. Thus we combined the capabilities of molecular ink lithography with DNA-self-assembling capabilities to arrange DNA in an independent array which allows addressing molecules in nanoscale dimensions.</p> <p>Results</p> <p>For the construction of DNA based nanostructures a method is presented that allows an arrangement of DNA strands in such a way that they can form a grid that only depends on the spotted pattern of the anchor molecules. An atomic force microscope (AFM) has been used for molecular ink lithography to generate small spots. The sequential spotting process allows the immobilization of several different functional biomolecules with a single AFM-tip. This grid which delivers specific addresses for the prepared DNA-strand serves as a two-dimensional anchor to arrange the sequence according to the pattern. Once the DNA-nanoarray has been formed, it can be functionalized by PNA (peptide nucleic acid) to incorporate advanced structures.</p> <p>Conclusions</p> <p>The production of DNA-nanoarrays is a promising task for nanobiotechnology. The described method allows convenient and low cost preparation of nanoarrays. PNA can be used for complex functionalization purposes as well as a structural element.</p

    Monitoring Entanglement Evolution and Collective Quantum Dynamics

    Get PDF
    We generalize a recently developed scheme for monitoring coherent quantum dynamics with good time-resolution and low backaction [Reuther et al., Phys. Rev. Lett. 102, 033602 (2009)] to the case of more complex quantum dynamics of one or several qubits. The underlying idea is to measure with lock-in techniques the response of the quantum system to a high-frequency ac field. We demonstrate that this scheme also allows one to observe quantum dynamics with many frequency scales, such as that of a qubit undergoing Landau-Zener transitions. Moreover, we propose how to measure the entanglement between two qubits as well as the collective dynamics of qubit arrays.Comment: 11 pages, 5 figure

    Spin Chains as Perfect Quantum State Mirrors

    Full text link
    Quantum information transfer is an important part of quantum information processing. Several proposals for quantum information transfer along linear arrays of nearest-neighbor coupled qubits or spins were made recently. Perfect transfer was shown to exist in two models with specifically designed strongly inhomogeneous couplings. We show that perfect transfer occurs in an entire class of chains, including systems whose nearest-neighbor couplings vary only weakly along the chain. The key to these observations is the Jordan-Wigner mapping of spins to noninteracting lattice fermions which display perfectly periodic dynamics if the single-particle energy spectrum is appropriate. After a half-period of that dynamics any state is transformed into its mirror image with respect to the center of the chain. The absence of fermion interactions preserves these features at arbitrary temperature and allows for the transfer of nontrivially entangled states of several spins or qubits.Comment: Abstract extended, introduction shortened, some clarifications in the text, one new reference. Accepted by Phys. Rev. A (Rapid Communications

    Investigation of Balcony Plume Entrainment

    Get PDF
    • …
    corecore