64 research outputs found

    Impact of oxidative stress on exercising skeletal muscle

    Get PDF
    It is well established that muscle contractions during exercise lead to elevated levels of reactive oxygen species (ROS) in skeletal muscle. These highly reactive molecules have many deleterious effects, such as a reduction of force generation and increased muscle atrophy. Since the discovery of exercise-induced oxidative stress several decades ago, evidence has accumulated that ROS produced during exercise also have positive effects by influencing cellular processes that lead to increased expression of antioxidants. These molecules are particularly elevated in regularly exercising muscle to prevent the negative effects of ROS by neutralizing the free radicals. In addition, ROS also seem to be involved in the exercise-induced adaptation of the muscle phenotype. This review provides an overview of the evidences to date on the effects of ROS in exercising muscle. These aspects include the sources of ROS, their positive and negative cellular effects, the role of antioxidants, and the present evidence on ROS-dependent adaptations of muscle cells in response to physical exercise

    Introduction to oxidative stress in biomedical and biological research

    Get PDF
    Oxidative stress is now a well-researched area with thousands of new articles appearing every year. We want to give the reader here an overview of the topics in biomedical and basic oxidative stress research which are covered by the authors of this thematic issue. We also want to give the newcomer a short introduction into some of the basic concepts, definitions and analytical procedures used in this field.(VLID)219244

    Frequency Distribution and Association of some Morpho- and Physiological Traits in Patients with Lung Diseases in Kosova

    Get PDF
    The aim of this study was to investigate the distribution of specific phenotypes in patients with lung diseases as well as their eventual association withthe risk of developing lung diseases. For this purpose 2777 patients with lung diseases and 2778 healthy individuals from all over Kosova were examined for the appearance of the following selected phenotypes: ear lobe free (ELF)/ ear lobe attached, normal chin (NC)/cleft chin, tongue roller (TR)/non roller, hand clasping right thumb over (HC)/ hand clasping left thumb over, righthanded (RH)/lefthanded. In addition, the blood group from ABO system and the presence or absence of the Rhesus factor as phenotypical markers were observed. The results obtained show significant differences between control and lung disease patients for NC (P≤0.05) and TR (P≤0.005) as well as for blood groups AB (P≤0.05) and O (P≤0.005). These results point to eventually increased levels of genetic load as a result of the increased homozygosity in some gene loci causing an increased frequency of some recessive phenotypes in patients with lung diseases. Together with the specific associations observed, these preliminary findings could serve as a basis for further in depth investigations with respect to the types of lung diseases, occupational exposure and dietary habits, and thus is expected to contribute to an understanding of predispositions and susceptibility to lung diseases

    hiPSC-Derived Epidermal Keratinocytes from Ichthyosis Patients Show Altered Expression of Cornification Markers

    Get PDF
    Inherited ichthyoses represent a large heterogeneous group of skin disorders characterised by impaired epidermal barrier function and disturbed cornification. Current knowledge about disease mechanisms has been uncovered mainly through the use of mouse models or human skin organotypic models. However, most mouse lines suffer from severe epidermal barrier defects causing neonatal death and human keratinocytes have very limited proliferation ability in vitro. Therefore, the development of disease models based on patient derived human induced pluripotent stem cells (hiPSCs) is highly relevant. For this purpose, we have generated hiPSCs from patients with congenital ichthyosis, either non-syndromic autosomal recessive congenital ichthyosis (ARCI) or the ichthyosis syndrome trichothiodystrophy (TTD). hiPSCs were successfully differentiated into basal keratinocyte-like cells (hiPSC-bKs), with high expression of epidermal keratins. In the presence of higher calcium concentrations, terminal differentiation of hiPSC-bKs was induced and markers KRT1 and IVL expressed. TTD1 hiPSC-bKs showed reduced expression of FLG, SPRR2B and lipoxygenase genes. ARCI hiPSC-bKs showed more severe defects, with downregulation of several cornification genes. The application of hiPSC technology to TTD1 and ARCI demonstrates the successful generation of in vitro models mimicking the disease phenotypes, proving a valuable system both for further molecular investigations and drug development for ichthyosis patients

    Antioxidants / Effects of -carotene and its cleavage products in primary pneumocyte type II cells

    Get PDF
    -Carotene has been shown to increase the risk of developing lung cancer in smokers and asbestos workers in two large scale trails, the Beta-Carotene and Retinol Efficacy Trial (CARET) and the Alpha-Tocopherol Beta-carotene Cancer Prevention Trial (ATBC). Based on this observation, it was proposed that genotoxic oxidative breakdown products may cause this effect. In support of this assumption, increased levels of sister chromatid exchanges, micronuclei, and chromosomal aberrations were found in primary hepatocyte cultures treated with a mixture of cleavage products (CPs) and the major product apo-8′carotenal. However, because these findings cannot directly be transferred to the lung due to the exceptional biotransformation capacity of the liver, potential genotoxic and cytotoxic effects of -carotene under oxidative stress and its CPs were investigated in primary pneumocyte type II cells. The results indicate that increased concentrations of -carotene in the presence of the redox cycling quinone dimethoxynaphthoquinone (DMNQ) exhibit a cytotoxic potential, as evidenced by an increase of apoptotic cells and loss of cell density at concentrations > 10 M. On the other hand, the analysis of micronucleated cells gave no clear picture due to the cytotoxicity related reduction of mitotic cells. Last, although CPs induced significant levels of DNA strand breaks even at concentrations 1 M and 5 M, respectively, -carotene in the presence of DMNQ did not cause DNA damage. Instead, -carotene appeared to act as an antioxidant. These findings are in contrast with what was demonstrated for primary hepatocytes and may reflect different sensitivities to and different metabolism of -carotene in the two cell types.(VLID)219514

    Unknown mutations and genotype/phenotype correlations of autosomal recessive congenital ichthyosis in patients from Saudi Arabia and Pakistan

    Get PDF
    Background Autosomal recessive congenital ichthyosis (ARCI) is a genetically and phenotypically heterogeneous skin disease, associated with defects in the skin permeability barrier. Several but not all genes with underlying mutations have been identified, but a clear correlation between genetic causes and clinical picture has not been described to date. Methods Our study included 19 families from Saudi Arabia, Yemen, and Pakistan. All patients were born to consanguineous parents and diagnosed with ARCI. Mutations were analyzed by homozygosity mapping and direct sequencing. Results We have detected mutations in all families in five different genes: TGM1, ABCA12, CYP4F22, NIPAL4, and ALOXE3. Five likely pathogenic variants were unknown so far, a splice site and a missense variant in TGM1, a splice site variant in NIPAL4, and missense variants in ABCA12 and CYP4F22. We attributed TGM1 and ABCA12 mutations to the most severe forms of lamellar and erythematous ichthyoses, respectively, regardless of treatment. Other mutations highlighted the presence of a phenotypic spectrum in ARCI. Conclusion Our results contribute to expanding the mutational spectrum of ARCI and revealed new insights into genotype/phenotype correlations. The findings are instrumental for a faster and more precise diagnosis, a better understanding of the pathophysiology, and the definition of targets for more specific therapies for ARCI

    Cystatin M/E Variant Causes Autosomal Dominant Keratosis Follicularis Spinulosa Decalvans by Dysregulating Cathepsins L and V

    Get PDF
    Keratosis follicularis spinulosa decalvans (KFSD) is a rare cornification disorder with an X-linked recessive inheritance in most cases. Pathogenic variants causing X-linked KFSD have been described in MBTPS2, the gene for a membrane-bound zinc metalloprotease that is involved in the cleavage of sterol regulatory element binding proteins important for the control of transcription. Few families have been identified with an autosomal dominant inheritance of KFSD. We present two members of an Austrian family with a phenotype of KFSD, a mother and her son. The disease was not observed in her parents, pointing to a dominant inheritance with a de novo mutation in the index patient. Using whole-exome sequencing, we identified a heterozygous missense variant in CST6 in DNA samples from the index patient and her affected son. In line with family history, the variant was not present in samples from her parents. CST6 codes for cystatin M/E, a cysteine protease inhibitor. Patient keratinocytes showed increased expression of cathepsin genes CTSL and CTSV and reduced expression of transglutaminase genes TGM1 and TGM3. A relative gain of active, cleaved transglutaminases was found in patient keratinocytes compared to control cells. The variant found in CST6 is expected to affect protein targeting and results in marked disruption of the balance between cystatin M/E activity and its target proteases and eventually transglutaminases 1 and 3. This disturbance leads to an impairment of terminal epidermal differentiation and proper hair shaft formation seen in KFSD
    corecore