60 research outputs found

    Enlarged cerebrospinal fluid spaces in opiate-dependent male patients: A stereological CT study

    Get PDF
    Computed tomography was performed in 9 male patients with a diagnosis of opiate dependence and in 9 age-matched psychiatric controls (neurotic depression). Patients with a history or diagnosis of another substance dependence (alcohol, cocaine, cannabis) were excluded from the study. The volumes of internal and external components of cerebrospinal fluid (CSF) were measured with a point-counting stereological method. Analysis of variance with age as a covariate revealed a significant enlargement of external and external CSF spaces in male patients with opiate dependence. There was no significant correlation between the length of opiate dependence and the volumes of internal and external CSF spaces. The present results suggest that opiate dependence is associated with structural brain alterations. However, the relationship between opiate dependence and structural brain changes is complex and still not well understood

    Mechanistic links between cellular trade-offs, gene expression, and growth

    Get PDF
    International audienceIntracellular processes rarely work in isolation but continually interact with the rest of the cell. In microbes, for example, we now know that gene expression across the whole genome typically changes with growth rate. The mechanisms driving such global regulation, however, are not well understood. Here we consider three trade-offs that, because of limitations in levels of cellular energy, free ribosomes, and proteins, are faced by all living cells and we construct a mechanistic model that comprises these trade-offs. Our model couples gene expression with growth rate and growth rate with a growing population of cells. We show that the model recovers Monod's law for the growth of microbes and two other empirical relationships connecting growth rate to the mass fraction of ribosomes. Further, we can explain growth-related effects in dosage compensation by paralogs and predict host-circuit interactions in synthetic biology. Simulating competitions between strains, we find that the regulation of metabolic pathways may have evolved not to match expression of enzymes to levels of extracellular substrates in changing environments but rather to balance a trade-off between exploiting one type of nutrient over another. Although coarse-grained, the trade-offs that the model embodies are fundamental, and, as such, our modeling framework has potentially wide application, including in both biotechnology and medicine. systems biology | synthetic biology | mathematical cell model | host-circuit interactions | evolutionarily stable strategy I ntracellular processes rarely work in isolation but continually interact with the rest of the cell. Yet often we study cellular processes with the implicit assumption that the remainder of the cell can either be ignored or provides a constant, background environment. Work in both systems and synthetic biology is, however, showing that this assumption is weak, at best. In microbes, growth rate can affect the expression both of single genes (1, 2) and across the entire genome (3-6). Specific control by transcription factors seems to be complemented by global, unspecific regulation that reflects the physiological state of the cell (5-7). Correspondingly, progress in synthetic biology is limited by two-way interactions between synthetic circuits and the host cell that cannot be designed away (8, 9). These phenomena are thought to arise from trade-offs where commitment of a finite intracellular resource to one response necessarily reduces the commitment of that resource to another response. A trade-off in the allocation of ribosomes has been suggested to underlie global gene regulation (2, 5). Similarly, depletion of finite resources and competition for cellular processes is thought to explain the failure of some synthetic circuits (8). Such circuits "load" the host cell, which can induce physiological responses that further degrade the function of the circuit (10). Our understanding of such trade-offs, however, is mostly phenomenological. Here we take an alternative approach and ask what new insight can be gained from a minimal mechanistic model that captures these trade-offs. We focus on three trade-offs that can be considered universal in the sense that they are experienced by all living cells: (i) finite levels of cellular energy so that launching a new biochemical process reduces the activities of others; (ii) finite levels of ribosomes so that translating a new type of mRNA reduces translation of all other mRNAs; and (iii) a finite proteome, or cell mass, so that expressing a new type of protein reduces levels of other types. Reduced demand on any of these finite resources will, correspondingly, free that resource for other intracellular processes. We develop a mechanistic cellular model built around these three trade-offs. The model predicts allocation of the proteome, energy turnover, and physiological phenotypes, such as growth rate, from specifications made at the level of genotype, and thus connects molecular mechanisms to cellular behavior. A whole-cell model has been proposed as one way to make such predictions (11), but its level of detail may sometimes obscure the core biochemistry that underlies the observed phenotypes and potentially complicates further analyses. We instead adopt a complementary coarse-grained approach (12-14) and try to find minimal descriptions that highlight the mechanisms generating the in silico phenotypes we observe. In contrast to other approaches (13, 14), we emphasize that we do not optimize either growth rate or any other physiological variable. With only these trade-offs we can derive fundamental properties of microbial growth (15, 16) and potentially explain diverse phenomena such as gene dosage compensation (17) and host effects on the performance of synthetic circuits. Our mechanistic framework can be extended to include, for example, signal transduction and population-scale effects. Using such an extension , we study the evolutionary benefits of gene regulation and find that transcriptional regulation of metabolic pathways may Significance Cells have finite resources. Committing resources to one task therefore reduces the amount of resources available to others. These trade-offs are often overlooked but potentially modify all cellular processes. Building a mathematical cell model that respects such trade-offs and describes the mechanisms of protein synthesis and how cells extract resources from their environment, we quantitatively recover the typical behavior of an individual growing cell and of a population of cells. As trade-offs are experienced by all cells and because growth largely determines cellular fitness, a predictive understanding of how biochemical processes affect others and affect growth is important for diverse applications, such as the use of microbes for biotechnology, the inhibition of antibiotic resistance, and the growth of cancers

    Lumpability Abstractions of Rule-based Systems

    Get PDF
    The induction of a signaling pathway is characterized by transient complex formation and mutual posttranslational modification of proteins. To faithfully capture this combinatorial process in a mathematical model is an important challenge in systems biology. Exploiting the limited context on which most binding and modification events are conditioned, attempts have been made to reduce the combinatorial complexity by quotienting the reachable set of molecular species, into species aggregates while preserving the deterministic semantics of the thermodynamic limit. Recently we proposed a quotienting that also preserves the stochastic semantics and that is complete in the sense that the semantics of individual species can be recovered from the aggregate semantics. In this paper we prove that this quotienting yields a sufficient condition for weak lumpability and that it gives rise to a backward Markov bisimulation between the original and aggregated transition system. We illustrate the framework on a case study of the EGF/insulin receptor crosstalk.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005

    Heterodimensional charge-carrier confinement in stacked submonolayer InAs in GaAs

    Get PDF
    Charge-carrier confinement in nanoscale In-rich agglomerations within a lateral InGaAs quantum well (QW) formed from stacked submonolayers (SMLs) of InAs in GaAs is studied. Low-temperature photoluminescence (PL) and magneto-PL clearly demonstrate strong vertical and weak lateral confinement, yielding two-dimensional (2D) excitons. In contrast, high-temperature (400 K) magneto-PL reveals excited states that fit a Fock-Darwin spectrum, characteristic of a zero-dimensional (0D) system in a magnetic field. This paradox is resolved by concluding that the system is heterodimensional: the light electrons extend over several In-rich agglomerations and see only the lateral InGaAs QW, i.e., are 2D, while the heavier holes are confined within the In-rich agglomerations, i.e., are 0D. This description is supported by single-particle effective-mass and eight-band k⋅p calculations. We suggest that the heterodimensional nature of nanoscale SML inclusions is fundamental to the ability of respective optoelectronic devices to operate efficiently and at high speed

    A dynamic H3K27ac signature identifies VEGFA-stimulated endothelial enhancers and requires EP300 activity

    Get PDF
    Histone modifications are now well-established mediators of transcriptional programs that distinguish cell states. However, the kinetics of histone modification and their role in mediating rapid, signal-responsive gene expression changes has been little studied on a genome-wide scale. Vascular endothelial growth factor A (VEGFA), a major regulator of angiogenesis, triggers changes in transcriptional activity of human umbilical vein endothelial cells (HUVECs). Here, we used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to measure genome-wide changes in histone H3 acetylation at lysine 27 (H3K27ac), a marker of active enhancers, in unstimulated HUVECs and HUVECs stimulated with VEGFA for 1, 4, and 12 h. We show that sites with the greatest H3K27ac change upon stimulation were associated tightly with EP300, a histone acetyltransferase. Using the variation of H3K27ac as a novel epigenetic signature, we identified transcriptional regulatory elements that are functionally linked to angiogenesis, participate in rapid VEGFA-stimulated changes in chromatin conformation, and mediate VEGFA-induced transcriptional responses. Dynamic H3K27ac deposition and associated changes in chromatin conformation required EP300 activity instead of altered nucleosome occupancy or changes in DNase I hypersensitivity. EP300 activity was also required for a subset of dynamic H3K27ac sites to loop into proximity of promoters. Our study identified thousands of endothelial, VEGFA-responsive enhancers, demonstrating that an epigenetic signature based on the variation of a chromatin feature is a productive approach to define signal-responsive genomic elements. Further, our study implicates global epigenetic modifications in rapid, signal-responsive transcriptional regulation

    Loss of FHL1 induces an age-dependent skeletal muscle myopathy associated with myofibrillar and intermyofibrillar disorganization in mice

    Get PDF
    Recent human genetic studies have provided evidences that sporadic or inherited missense mutations in four-and-a-half LIM domain protein 1 (FHL1), resulting in alterations in FHL1 protein expression, are associated with rare congenital myopathies, including reducing body myopathy and Emery–Dreifuss muscular dystrophy. However, it remains to be clarified whether mutations in FHL1 cause skeletal muscle remodeling owing to gain- or loss of FHL1 function. In this study, we used FHL1-null mice lacking global FHL1 expression to evaluate loss-of-function effects on skeletal muscle homeostasis. Histological and functional analyses of soleus, tibialis anterior and sternohyoideus muscles demonstrated that FHL1-null mice develop an age-dependent myopathy associated with myofibrillar and intermyofibrillar (mitochondrial and sarcoplasmic reticulum) disorganization, impaired muscle oxidative capacity and increased autophagic activity. A longitudinal study established decreased survival rates in FHL1-null mice, associated with age-dependent impairment of muscle contractile function and a significantly lower exercise capacity. Analysis of primary myoblasts isolated from FHL1-null muscles demonstrated early muscle fiber differentiation and maturation defects, which could be rescued by re-expression of the FHL1A isoform, highlighting that FHL1A is necessary for proper muscle fiber differentiation and maturation in vitro. Overall, our data show that loss of FHL1 function leads to myopathy in vivo and suggest that loss of function of FHL1 may be one of the mechanisms underlying muscle dystrophy in patients with FHL1 mutations

    “Genes”

    Get PDF
    In order to describe a cell at molecular level, a notion of a “gene” is neither necessary nor helpful. It is sufficient to consider the molecules (i.e., chromosomes, transcripts, proteins) and their interactions to describe cellular processes. The downside of the resulting high resolution is that it becomes very tedious to address features on the organismal and phenotypic levels with a language based on molecular terms. Looking for the missing link between biological disciplines dealing with different levels of biological organization, we suggest to return to the original intent behind the term “gene”. To this end, we propose to investigate whether a useful notion of “gene” can be constructed based on an underlying notion of function, and whether this can serve as the necessary link and embed the various distinct gene concepts of biological (sub)disciplines in a coherent theoretical framework. In reply to the Genon Theory recently put forward by Klaus Scherrer and Jürgen Jost in this journal, we shall discuss a general approach to assess a gene definition that should then be tested for its expressiveness and potential cross-disciplinary relevance

    Diffusion tensor imaging of frontal lobe white matter tracts in schizophrenia

    Get PDF
    We acquired diffusion tensor and structural MRI images on 103 patients with schizophrenia and 41 age-matched normal controls. The vector data was used to trace tracts from a region of interest in the anterior limb of the internal capsule to the prefrontal cortex. Patients with schizophrenia had tract paths that were significantly shorter in length from the center of internal capsule to prefrontal white matter. These tracts, the anterior thalamic radiations, are important in frontal-striatal-thalamic pathways. These results are consistent with findings of smaller size of the anterior limb of the internal capsule in patients with schizophrenia, diffusion tensor anisotropy decreases in frontal white matter in schizophrenia and hypothesized disruption of the frontal-striatal-thalamic pathway system
    corecore