61 research outputs found

    Computer-controlled apparatus for automated development of continuous flow methods

    Get PDF
    An automated apparatus to assist in the development of analytical continuous flow methods is described. The system is capable of controlling and monitoring a variety of pumps, valves, and detectors through an IBM PC-AT compatible computer. System components consist of two types of peristaltic pumps (including a multiple pump unit), syringe pumps, electrically and pneumatically actuated valves, and an assortment of spectrophotometric and electrochemical detectors. Details of the interface circuitry are given where appropriate. To demonstrate the utility of the system, an automatically generated response surface is presented for the flow injection determination of iron(II) by its reaction with 1,10-phenanthroline

    Multivariate curve resolution of time course microarray data

    Get PDF
    BACKGROUND: Modeling of gene expression data from time course experiments often involves the use of linear models such as those obtained from principal component analysis (PCA), independent component analysis (ICA), or other methods. Such methods do not generally yield factors with a clear biological interpretation. Moreover, implicit assumptions about the measurement errors often limit the application of these methods to log-transformed data, destroying linear structure in the untransformed expression data. RESULTS: In this work, a method for the linear decomposition of gene expression data by multivariate curve resolution (MCR) is introduced. The MCR method is based on an alternating least-squares (ALS) algorithm implemented with a weighted least squares approach. The new method, MCR-WALS, extracts a small number of basis functions from untransformed microarray data using only non-negativity constraints. Measurement error information can be incorporated into the modeling process and missing data can be imputed. The utility of the method is demonstrated through its application to yeast cell cycle data. CONCLUSION: Profiles extracted by MCR-WALS exhibit a strong correlation with cell cycle-associated genes, but also suggest new insights into the regulation of those genes. The unique features of the MCR-WALS algorithm are its freedom from assumptions about the underlying linear model other than the non-negativity of gene expression, its ability to analyze non-log-transformed data, and its use of measurement error information to obtain a weighted model and accommodate missing measurements

    An eQTL Analysis of Partial Resistance to Puccinia hordei in Barley

    Get PDF
    Background - Genetic resistance to barley leaf rust caused by Puccinia hordei involves both R genes and quantitative trait loci. The R genes provide higher but less durable resistance than the quantitative trait loci. Consequently, exploring quantitative or partial resistance has become a favorable alternative for controlling disease. Four quantitative trait loci for partial resistance to leaf rust have been identified in the doubled haploid Steptoe (St)/Morex (Mx) mapping population. Further investigations are required to study the molecular mechanisms underpinning partial resistance and ultimately identify the causal genes.Methodology/Principal Findings - We explored partial resistance to barley leaf rust using a genetical genomics approach. We recorded RNA transcript abundance corresponding to each probe on a 15K Agilent custom barley microarray in seedlings from St and Mx and 144 doubled haploid lines of the St/Mx population. A total of 1154 and 1037 genes were, respectively, identified as being P. hordei-responsive among the St and Mx and differentially expressed between P. hordei-infected St and Mx. Normalized ratios from 72 distant-pair hybridisations were used to map the genetic determinants of variation in transcript abundance by expression quantitative trait locus (eQTL) mapping generating 15685 eQTL from 9557 genes. Correlation analysis identified 128 genes that were correlated with resistance, of which 89 had eQTL co-locating with the phenotypic quantitative trait loci (pQTL). Transcript abundance in the parents and conservation of synteny with rice allowed us to prioritise six genes as candidates for Rphq11, the pQTL of largest effect, and highlight one, a phospholipid hydroperoxide glutathione peroxidase (HvPHGPx) for detailed analysis.Conclusions/Significance - The eQTL approach yielded information that led to the identification of strong candidate genes underlying pQTL for resistance to leaf rust in barley and on the general pathogen response pathway. The dataset will facilitate a systems appraisal of this host-pathogen interaction and, potentially, for other traits measured in this populatio

    Play, Learn, and Teach Outdoors—Network (PLaTO-Net): terminology, taxonomy, and ontology

    Get PDF
    Background: A recent dialogue in the feld of play, learn, and teach outdoors (referred to as “PLaTO” hereafter) demonstrated the need for developing harmonized and consensus-based terminology, taxonomy, and ontology for PLaTO. This is important as the feld evolves and diversifes in its approaches, contents, and contexts over time and in diferent countries, cultures, and settings. Within this paper, we report the systematic and iterative processes under‑taken to achieve this objective, which has built on the creation of the global PLaTO-Network (PLaTO-Net). Methods: This project comprised of four major methodological phases. First, a systematic scoping review was conducted to identify common terms and defnitions used pertaining to PLaTO. Second, based on the results of the scoping review, a draft set of key terms, taxonomy, and ontology were developed, and shared with PLaTO members, who provided feedback via four rounds of consultation. Third, PLaTO terminology, taxonomy, and ontology were then fnalized based on the feedback received from 50 international PLaTO member participants who responded to≥3 rounds of the consultation survey and dialogue. Finally, eforts to share and disseminate project outcomes were made through diferent online platforms. Results: This paper presents the fnal defnitions and taxonomy of 31 PLaTO terms along with the PLaTO-Net ontol‑ogy model. The model incorporates other relevant concepts in recognition that all the aspects of the model are interrelated and interconnected. The fnal terminology, taxonomy, and ontology are intended to be applicable to, and relevant for, all people encompassing various identities (e.g., age, gender, culture, ethnicity, ability). Conclusions: This project contributes to advancing PLaTO-based research and facilitating intersectoral and inter‑disciplinary collaboration, with the long-term goal of fostering and strengthening PLaTO’s synergistic linkages with healthy living, environmental stewardship, climate action, and planetary health agendas. Notably, PLaTO terminology, taxonomy and ontology will continue to evolve, and PLaTO-Net is committed to advancing and periodically updating harmonized knowledge and understanding in the vast and interrelated areas of PLaTO

    Stochastic Stability in Network with Decay

    Full text link
    corecore