2,259 research outputs found
The tapeworm interactome: inferring confidence scored protein-protein interactions from the proteome of Hymenolepis microstoma
BACKGROUND: Reference genome and transcriptome assemblies of helminths have reached a level of completion whereby secondary analyses that rely on accurate gene estimation or syntenic relationships can be now conducted with a high level of confidence. Recent public release of the v.3 assembly of the mouse bile-duct tapeworm, Hymenolepis microstoma, provides chromosome-level characterisation of the genome and a stabilised set of protein coding gene models underpinned by bioinformatic and empirical data. However, interactome data have not been produced. Conserved protein-protein interactions in other organisms, termed interologs, can be used to transfer interactions between species, allowing systems-level analysis in non-model organisms.
RESULTS: Here, we describe a probabilistic, integrated network of interologs for the H. microstoma proteome, based on conserved protein interactions found in eukaryote model species. Almost a third of the 10,139 gene models in the v.3 assembly could be assigned interaction data and assessment of the resulting network indicates that topologically-important proteins are related to essential cellular pathways, and that the network clusters into biologically meaningful components. Moreover, network parameters are similar to those of single-species interaction networks that we constructed in the same way for S. cerevisiae, C. elegans and H. sapiens, demonstrating that information-rich, system-level analyses can be conducted even on species separated by a large phylogenetic distance from the major model organisms from which most protein interaction evidence is based. Using the interolog network, we then focused on sub-networks of interactions assigned to discrete suites of genes of interest, including signalling components and transcription factors, germline multipotency genes, and genes differentially-expressed between larval and adult worms. Results show not only an expected bias toward highly-conserved proteins, such as components of intracellular signal transduction, but in some cases predicted interactions with transcription factors that aid in identifying their target genes.
CONCLUSIONS: With key helminth genomes now complete, systems-level analyses can provide an important predictive framework to guide basic and applied research on helminths and will become increasingly informative as new protein-protein interaction data accumulate
Comparative analysis of Wnt expression identifies a highly conserved developmental transition in flatworms
Background
Early developmental patterns of flatworms are extremely diverse and difficult to compare between distant groups. In parasitic flatworms, such as tapeworms, this is confounded by highly derived life cycles involving indirect development, and even the true orientation of the tapeworm antero-posterior (AP) axis has been a matter of controversy. In planarians, and metazoans generally, the AP axis is specified by the canonical Wnt pathway, and we hypothesized that it could also underpin axial formation during larval metamorphosis in tapeworms.
Results
By comparative gene expression analysis of Wnt components and conserved AP markers in the tapeworms Echinococcus multilocularis and Hymenolepis microstoma, we found remarkable similarities between the early stages of larval metamorphosis in tapeworms and late embryonic and adult development in planarians. We demonstrate posterior expression of specific Wnt factors during larval metamorphosis and show that scolex formation is preceded by localized expression of Wnt inhibitors. In the highly derived larval form of E. multilocularis, which proliferates asexually within the mammalian host, we found ubiquitous expression of posterior Wnt factors combined with localized expression of Wnt inhibitors that correlates with the asexual budding of scoleces. As in planarians, muscle cells are shown to be a source of secreted Wnt ligands, providing an explanation for the retention of a muscle layer in the immotile E. multilocularis larva.
Conclusions
The strong conservation of gene expression between larval metamorphosis in tapeworms and late embryonic development in planarians suggests, for the first time, a homologous developmental period across this diverse phylum. We postulate these to represent the phylotypic stages of these flatworm groups. Our results support the classical notion that the scolex is the true anterior end of tapeworms. Furthermore, the up-regulation of Wnt inhibitors during the specification of multiple anterior poles suggests a mechanism for the unique asexual reproduction of E. multilocularis larvae
Two-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic fluid flow through porous media
The behaviour of two dimensional binary and ternary amphiphilic fluids under
flow conditions is investigated using a hydrodynamic lattice gas model. After
the validation of the model in simple cases (Poiseuille flow, Darcy's law for
single component fluids), attention is focussed on the properties of binary
immiscible fluids in porous media. An extension of Darcy's law which explicitly
admits a viscous coupling between the fluids is verified, and evidence of
capillary effects are described. The influence of a third component, namely
surfactant, is studied in the same context. Invasion simulations have also been
performed. The effect of the applied force on the invasion process is reported.
As the forcing level increases, the invasion process becomes faster and the
residual oil saturation decreases. The introduction of surfactant in the
invading phase during imbibition produces new phenomena, including
emulsification and micellisation. At very low fluid forcing levels, this leads
to the production of a low-resistance gel, which then slows down the progress
of the invading fluid. At long times (beyond the water percolation threshold),
the concentration of remaining oil within the porous medium is lowered by the
action of surfactant, thus enhancing oil recovery. On the other hand, the
introduction of surfactant in the invading phase during drainage simulations
slows down the invasion process -- the invading fluid takes a more tortuous
path to invade the porous medium -- and reduces the oil recovery (the residual
oil saturation increases).Comment: 48 pages, 26 figures. Phys. Rev. E (in press
Three dimensional hysdrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media
We report the results of a study of multiphase flow in porous media. A
Darcy's law for steady multiphase flow was investigated for both binary and
ternary amphiphilic flow. Linear flux-forcing relationships satisfying Onsager
reciprocity were shown to be a good approximation of the simulation data. The
dependence of the relative permeability coefficients on water saturation was
investigated and showed good qualitative agreement with experimental data.
Non-steady state invasion flows were investigated, with particular interest in
the asymptotic residual oil saturation. The addition of surfactant to the
invasive fluid was shown to significantly reduce the residual oil saturation.Comment: To appear in Phys. Rev.
Three-dimensional adaptive evolution of gravitational waves in numerical relativity
Adaptive techniques are crucial for successful numerical modeling of
gravitational waves from astrophysical sources such as coalescing compact
binaries, since the radiation typically has wavelengths much larger than the
scale of the sources. We have carried out an important step toward this goal,
the evolution of weak gravitational waves using adaptive mesh refinement in the
Einstein equations. The 2-level adaptive simulation is compared with unigrid
runs at coarse and fine resolution, and is shown to track closely the features
of the fine grid run.Comment: REVTeX, 7 pages, including three figures; submitted to Physical
Review
Shear-Induced Isotropic-to-Lamellar Transition in a Lattice-Gas Model of Ternary Amphiphilic Fluids
Although shear-induced isotropic-to-lamellar transitions in ternary systems
of oil, water and surfactant have been observed experimentally and predicted
theoretically by simple models for some time now, their numerical simulation
has not been achieved so far. In this work we demonstrate that a recently
introduced hydrodynamic lattice-gas model of amphiphilic fluids is well suited
for this purpose: the two-dimensional version of this model does indeed exhibit
a shear-induced isotropic-to-lamellar phase transition.Comment: 17 pages, LaTeX with epsf and REVTeX, PostScript and EPS
illustrations included. To appear in J. Phys. Cond. Ma
Microwave Spectroscopy of Thermally Excited Quasiparticles in YBa_2Cu_3O_{6.99}
We present here the microwave surface impedance of a high purity crystal of
measured at 5 frequencies between 1 and 75 GHz. This data
set reveals the main features of the conductivity spectrum of the thermally
excited quasiparticles in the superconducting state. Below 20 K there is a
regime of extremely long quasiparticle lifetimes, due to both the collapse of
inelastic scattering below and the very weak impurity scattering in the
high purity -grown crystal used in this study. Above 20 K, the
scattering increases dramatically, initially at least as fast as .Comment: 13 pages with 10 figures. submitted to Phys Rev
- …
