38 research outputs found

    Measuring magnetic hysteresis curves with polarized soft X‐ray resonant reflectivity

    Get PDF
    Calculations and measurements of polarization‐dependent soft X‐ray scattering intensity are presented during a magnetic hysteresis cycle. It is confirmed that the dependence of the intensity on the magnetic moment can be linear, quadratic or a combination of both, depending on the polarization of the incident X‐ray beam and the direction of the magnetic moment. With a linearly polarized beam, the scattered intensity will have a purely quadratic dependence on the magnetic moment when the magnetic moment is parallel to the scattering plane. However, with the magnetic moment perpendicular to the scattering plane, there is also a linear component. This means that, when measuring the hysteresis with linear polarization during a hysteresis cycle, the intensity will be an even function of the applied field when the change in the magnetic moment (and field) is confined within the scattering plane but becomes more complicated when the magnetic moment is out of the scattering plane. Furthermore, with circular polarization, the dependence of the scattered intensity on the moment is a combination of linear and quadratic. With the moment parallel to the scattering plane, the linear component changes with the helicity of the incident beam. Surprisingly, in stark contrast to absorption studies, even when the magnetic moment is perpendicular to the scattering plane there is still a dependence on the moment with a linear component. This linear component is completely independent of the helicity of the beam, meaning that the hysteresis loops will not be inverted with helicity

    Full control of Co valence in isopolar LaCoO3 / LaTiO3 perovskite heterostructures via interfacial engineering

    Get PDF
    We report charge-transfer up to a single electron per interfacial unit cell across non-polar heterointerfaces from the Mott insulator LaTiO3 to the charge transfer insulator LaCoO3. In high-quality bi- and tri-layer systems grown using pulsed laser deposition, soft X-ray absorption, dichroism and STEM-EELS are used to probe the cobalt 3d-electron count and provide an element-specific investigation of the magnetic properties. The experiments prove a deterministically-tunable charge transfer process acting in the LaCoO3 within three unit cells of the heterointerface, able to generate full conversion to 3d7 divalent Co, which displays a paramagnetic ground state. The number of LaTiO3 / LaCoO3 interfaces, the thickness of an additional "break" layer between the LaTiO3 and LaCoO3, and the LaCoO3 film thickness itself in tri-layers provide a trio of sensitive control knobs for the charge transfer process, illustrating the efficacy of O2p-band alignment as a guiding principle for property design in complex oxide heterointerfaces

    Enhancing Magnetic Ordering in Cr-doped Bi2Se3 using High-TC Ferrimagnetic Insulator

    Full text link
    We report a study of enhancing the magnetic ordering in a model magnetically doped topological insulator (TI), Bi2-xCrxSe3, via the proximity effect using a high-TC ferrimagnetic insulator Y3Fe5O12. The FMI provides the TI with a source of exchange interaction yet without removing the nontrivial surface state. By performing the elemental specific X-ray magnetic circular dichroism (XMCD) measurements, we have unequivocally observed an enhanced TC of 50 K in this magnetically doped TI/FMI heterostructure. We have also found a larger (6.6 nm at 30 K) but faster decreasing (by 80% from 30 K to 50 K) penetration depth compared to that of diluted ferromagnetic semiconductors (DMSs), which could indicate a novel mechanism for the interaction between FMIs and the nontrivial TIs surface

    Spin-orbit coupled spin-polarised hole gas at the CrSe2-terminated surface of AgCrSe2

    Get PDF
    Funding: We gratefully acknowledge support from the European Research Council (through the QUESTDO project, 714193), the Engineering and Physical Sciences Research Council (Grant No. EP/T02108X/1), and the Leverhulme Trust (Grant No. RL-2016-006). S.-J.K., E.A.M., A.Z., and I.M. gratefully acknowledge studentship support from the International Max-Planck Research School for Chemistry and Physics of Quantum Materials. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020.In half-metallic systems, electronic conduction is mediated by a single spin species, offering enormous potential for spintronic devices. Here, using microscopic-area angle-resolved photoemission, we show that a spin-polarised two-dimensional hole gas is naturally realised in the polar magnetic semiconductor AgCrSe2 by an intrinsic self-doping at its CrSe2-terminated surface. Through comparison with first-principles calculations, we unveil a striking role of spin-orbit coupling for the surface hole gas, unlocked by both bulk and surface inversion symmetry breaking, suggesting routes for stabilising complex magnetic textures in the surface layer of AgCrSe2.Publisher PDFPeer reviewe

    Covalency, correlations, and interlayer interactions governing the magnetic and electronic structure of Mn3Si2Te6

    Get PDF
    Mn3Si2Te6 is a rare example of a layered ferrimagnet. It has recently been shown to host a colossal angular magnetoresistance as the spin orientation is rotated from the in- to out-of-plane direction, proposed to be underpinned by a topological nodal-line degeneracy in its electronic structure. Nonetheless, the origins of its ferrimagnetic structure remain controversial, while its experimental electronic structure, and the role of correlations in shaping this, are little explored to date. Here, we combine x-ray and photoemission-based spectroscopies with first-principles calculations to probe the elemental-selective electronic structure and magnetic order in Mn3Si2Te6. Through these, we identify a marked Mn-Te hybridization, which weakens the electronic correlations and enhances the magnetic anisotropy.We demonstrate how this strengthens the magnetic frustration in Mn3Si2Te6, which is key to stabilizing its ferrimagnetic order, and find a crucial role of both exchange interactions extending beyond nearest-neighbors and antisymmetric exchange in dictating its ordering temperature. Together, our results demonstrate a powerful methodology of using experimental electronic structure probes to constrain the parameter space for first-principles calculations of magnetic materials, and through this approach, reveal a pivotal role played by covalency in stabilizing the ferrimagnetic order in Mn3Si2Te6
    corecore