36 research outputs found

    Shifting Surface Currents in the Northern North Atlantic Ocean

    Get PDF
    Analysis of surface drifter tracks in the North Atlantic Ocean from the time period 1990 to 2006 provides the first evidence that the Gulf Stream waters can have direct pathways to the Nordic Seas. Prior to 2000, the drifters entering the channels leading to the Nordic Seas originated in the western and central subpolar region. Since 2001 several paths from the western subtropics have been present in the drifter tracks leading to the Rockall Trough through which the most saline North Atlantic Waters pass to the Nordic Seas. Eddy kinetic energy from altimetry shows also the increased energy along the same paths as the drifters, These near surface changes have taken effect while the altimetry shows a continual weakening of the subpolar gyre. These findings highlight the changes in the vertical structure of the northern North Atlantic Ocean, its dynamics and exchanges with the higher latitudes, and show how pathways of the thermohaline circulation can open up and maintain or increase its intensity even as the basin-wide circulation spins down

    Effects of large-scale topography on abyssal circulation

    Get PDF
    Two models are employed to study the effect of topographically induced planetary islands (i.e. closed contours of potential vorticity) on the abyssal circulation of an ocean basin. The first is a steady state calculation using a 1½ layer model of the abyssal ocean forced by a uniform upwelling. Planetary geostrophic dynamics yield a characteristic equation in which the inverse potential vorticity serves as a streamfunction for the characteristic velocity field. Aside from warping the classic Stommel-Arons flow in the immediate vicinity of the planetary island, the topography introduces two new elements to the zonal flow west of the topography. The first of these is a system of two zonal jets, flowing in opposite directions and centered on the separatrix contour. The second is an acceleration (or retardation) of the zonal flow (with respect to the classic flat-bottom result) in a broader region of the basin. The strengths of both the double jets and the broader regions of enhanced/retarded zonal flow are found to be determined by forcing in relatively small areas of the basin. The former are excited in the vicinity of saddle points of potential vorticity whereas the latter are excited primarily where the curvature of potential vorticity contours is large. The second model, a time dependent 2½ layer planetary geostrophic model is then used to investigate the spin-up problem. The model is forced by a uniform upwelling through each of the two interfaces. The density jump at the upper interface (e.g. the thermocline) is chosen to be ten times that at the lower interface, a disparity which leads to a separation in time scale between the fast and the slow waves of the system. Topography, however, induces a strong coupling between these two modes and results in a quick baroclinization of the flow over the topography. This baroclinization occurs well before the arrival of the nondispersive wave front from the eastern boundary and thus differs from the traditional view of spin-up

    A theory of wind-driven circulation. I. Mid-ocean gyres

    Get PDF
    A theory of the wind-driven ocean circulation is presented in which the key feature is strong deformation of interior density layers and consequent production of closed geostrophic-contours by the flow itself. The constraint imposed on the subsurface flow by the imposition of a no flux condition where a geostrophic contour strikes a coastal boundary is thus removed. Within regions where the geostrophic contours close the potential vorticity is uniform...

    A theory of the wind-driven circulation II. Gyres with western boundary layers

    Get PDF
    The quasigeostrophic, wind-driven circulation theory given by Rhines and Young (1982b) is extended in two directions. First, we consider forcing patterns which are not contrived so as to close without a western boundary layer. The resulting barotropic circulation pattern (see Fig. 1) has the well known east-west asymmetry produced by the β-effect...

    Observations of seasonal subduction at the Iceland-Faroe Front

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 4026–4040, doi:10.1002/2015JC011501.The polar front in the North Atlantic is bound to the ridge between Iceland and the Faroe Islands, where about one-half of the northward transport of warm Atlantic Water into the Nordic Seas occurs, as well as about one sixth of the equatorward dense overflow. We find a low salinity water mass at the surface of the Iceland-Faroe Front (IFF), which in wintertime subducts along outcropping isopycnals and is found in much modified form on the Atlantic side of the Iceland-Faroe Ridge (IFR) crest. The features found on the Atlantic side of the crest at depth have temperature and salinity characteristics which are clearly traceable to the surface outcrop of the IFF. The presence of coherent low salinity layers on the Atlantic side of the IFR crest has not been previously reported. Warm waters above the IFR primarily feed the Faroe Current, and injection of a low salinity water mass may play an early role in the water mass transformation taking place in the Nordic Seas. The seasonality of the intrusive features suggests a link between winter convection, mixed layer instability and deep frontal subduction. These low salinity anomalies (as well as a low oxygen water mass from the Iceland Basin) can be used as tracers of the intermediate circulation over the IFR.National Science Foundation OCE Division . Grant Numbers: OCE-1029344 , OCE-05505842016-12-1

    Atmospheric Blocking and Atlantic Multi-Decadal Ocean Variability

    Get PDF
    Atmospheric blocking over the northern North Atlantic involves isolation of large regions of air from the westerly circulation for 5-14 days or more. From a recent 20th century atmospheric reanalysis (1,2) winters with more frequent blocking persist over several decades and correspond to a warm North Atlantic Ocean, in-phase with Atlantic multi-decadal ocean variability (AMV). Ocean circulation is forced by wind-stress curl and related air/sea heat exchange, and we find that their space-time structure is associated with dominant blocking patterns: weaker ocean gyres and weaker heat exchange contribute to the warm phase of AMV. Increased blocking activity extending from Greenland to British Isles is evident when winter blocking days of the cold years (1900-1929) are subtracted from those of the warm years (1939-1968)

    Dissipation of turbulent kinetic energy inferred from Seagliders: an application to the eastern Nordic Seas overflows

    Get PDF
    Turbulent mixing is an important process controlling the descent rate, water mass modification, and volume transport augmentation due to entrainment in the dense overflows across the Greenland–Scotland Ridge. These overflows, along with entrained Atlantic waters, form a major portion of the North Atlantic Deep Water, which pervades the abyssal ocean. Three years of Seaglider observations of the overflows across the eastern Greenland–Scotland Ridge are leveraged to map the distribution of dissipation of turbulent kinetic energy on the Iceland–Faroe Ridge. A method has been applied using the finescale vertical velocity and density measurements from the glider to infer dissipation. The method, termed the large-eddy method (LEM), is compared with a microstructure survey of the Faroe Bank Channel (FBC). The LEM reproduces the patterns of dissipation observed in the microstructure survey, which vary over several orders of magnitude. Agreement between the inferred LEM and more direct microstructure measurements is within a factor of 2. Application to the 9432 dives that encountered overflow waters on the Iceland–Faroe Ridge reveals three regions of enhanced dissipation: one downstream of the primary FBC sill, another downstream of the secondary FBC sill, and a final region in a narrow jet of overflow along the Iceland shelf break.publishedVersio

    Spreading of Denmark Strait overflow water in the western subpolar North Atlantic : insights from eddy-resolving simulations with a passive tracer

    Get PDF
    Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2913–2932, doi:10.1175/JPO-D-14-0179.1.The oceanic deep circulation is shared between concentrated deep western boundary currents (DWBCs) and broader interior pathways, a process that is sensitive to seafloor topography. This study investigates the spreading and deepening of Denmark Strait overflow water (DSOW) in the western subpolar North Atlantic using two ° eddy-resolving Atlantic simulations, including a passive tracer injected into the DSOW. The deepest layers of DSOW transit from a narrow DWBC in the southern Irminger Sea into widespread westward flow across the central Labrador Sea, which remerges along the Labrador coast. This abyssal circulation, in contrast to the upper levels of overflow water that remain as a boundary current, blankets the deep Labrador Sea with DSOW. Farther downstream after being steered around the abrupt topography of Orphan Knoll, DSOW again leaves the boundary, forming cyclonic recirculation cells in the deep Newfoundland basin. The deep recirculation, mostly driven by the meandering pathway of the upper North Atlantic Current, leads to accumulation of tracer offshore of Orphan Knoll, precisely where a local maximum of chlorofluorocarbon (CFC) inventory is observed. At Flemish Cap, eddy fluxes carry ~20% of the tracer transport from the boundary current into the interior. Potential vorticity is conserved as the flow of DSOW broadens at the transition from steep to less steep continental rise into the Labrador Sea, while around the abrupt topography of Orphan Knoll, potential vorticity is not conserved and the DSOW deepens significantly.This work is supported by ONR Award N00014-09-1-0587, the NSF Physical Oceanography Program, and NASA Ocean Surface Topography Science Team Program.2016-06-0

    Convection above the Labrador continental slope

    Get PDF
    The Labrador Sea is one of the few regions of the World Ocean where deep convection takes place. Several moorings across the Labrador continental slope just north of Hamilton Bank show that convection does take place within the Labrador Current. Mixing above the lower Labrador slope is facilitated by the onshore along-isopycnal intrusions of low-potential-vorticity eddies that weaken the stratification, combined with baroclinic instability that sustains slanted mixing while restratifying the water column through horizontal fluxes. Above the shelf break, the Irminger seawater core is displaced onshore while the stratification weakens with the increase in isopycnal slope. The change in stratification is partially due to the onshore shift of the “classical” Labrador Current, baroclinic instability, and possibly slantwise convection

    VARIABILITY OF SUBPOLAR NORTH ATLANTIC CIRCULATION FROM ALTIMETRY

    No full text
    Altimeter data show that subpolar North Atlantic sea surface height has underwent large variations during the last two decades. Similarly the associated geostrophic velocity field exhibits large fluctutations in the strength of the subpolar gyre circulation such that the gyre was extremely strong in the early 1990's but may have been weaker in the late 1990s than in the late 1970s and 1980s. Numerical model experiments suggests that the 1990s had also large coincident changes in the meridional overturning in the North Atlantic Ocea
    corecore