108 research outputs found

    Complex oscillatory yielding of model hard sphere glasses

    Get PDF
    The yielding behaviour of hard sphere glasses under large amplitude oscillatory shear has been studied by probing the interplay of Brownian motion and shear-induced diffusion at varying oscillation frequencies. Stress, structure and dynamics are followed by experimental rheology and Browian Dynamics simulations. Brownian motion assisted cage escape dominates at low frequencies while escape through shear-induced collisions at high ones, both related with a yielding peak in\ G′′G^{\prime \prime}. At intermediate frequencies a novel, for HS glasses, double peak in G′′G^{\prime \prime} is revealed reflecting both mechanisms. At high frequencies and strain amplitudes a persistent structural anisotropy causes a stress drop within the cycle after strain reversal, while higher stress harmonics are minimized at certain strain amplitudes indicating an apparent harmonic response.Comment: 4 figures placed at the end with following order: Figure 1, figure 3, figure 4 and figure

    Yielding of Hard-Sphere Glasses during Start-Up Shear

    Get PDF
    Concentrated hard-sphere suspensions and glasses are investigated with rheometry, confocal microscopy, and Brownian dynamics simulations during start-up shear, providing a link between microstructure, dynamics, and rheology. The microstructural anisotropy is manifested in the extension axis where the maximum of the pair-distribution function exhibits a minimum at the stress overshoot. The interplay between Brownian relaxation and shear advection as well as the available free volume determine the structural anisotropy and the magnitude of the stress overshoot. Shear-induced cage deformation induces local constriction, reducing in-cage diffusion. Finally, a superdiffusive response at the steady state, with a minimum of the time-dependent effective diffusivity, reflects a continuous cage breakup and reformation
    • …
    corecore