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COMPUTER SIMULATIONS

Brownian dynamics (BD) simulations were conducted according to [1], with the addition

of an oscillatory shear field and the incorporation of a moderate polydispersity in the particles

in order to avoid shear induced crystallization.

In general since colloidal particles are much larger than solvent molecules the clear sepa-

ration of time and length scales allow us to treat the fluid as a continuum; however colloids

are still small enough to be affected by collisions with the fluid molecules and are thus still

Brownian. BD can be described as a simplification of SD, where hydrodynamic interactions

between particles are neglected. For N rigid particles of radius R and density ρ in a medium

of viscosity η moving with velocity U , we examine states where the Reynolds number (the

dimensionless ratio of inertial forces ρU2/R to viscous forces ηU/R2) is Re << 1. The

motion of the particles is described by the N-body Langevin equation:

m(dU/dt) = FH + FB + FP

wherem is the generalized mass/moment tensor, U is the particle translational/rotational

velocity vector, FH is the hydrodynamic force vector, FB is the stochastic force vector that

gives rise to Brownian motion, and FP is the deterministic non-hydrodynamic force vector.

Since inertia is not important in colloidal dispersions (Re << 1) the equation reduces to

FH + FB + FP = 0. The Brownian forces due to thermal fluid fluctuations are random so

their ensemble average is FB = 0, and follow the fluctuation-dissipation theorem so that

FB(0)FB(t) = 2kBT (6πηR)Iδ(t) with δ(t) the delta function and I the unit tensor. Here

we choose to use BD simulations were Hydrodynamic Interactions (HI) between particles

are ignored [1] instead of the much more computational demanding Stokesian Dynamics

(SD) method where the full HIs between particles are explicitly computed. In this case the

hydrodynamic force reduces to Stokes drag FH = −6πηRU, allowing the study of larger

and more concentrated systems, in a reasonable computation time.

The non-hydrodynamic force vector for a simple hard sphere system becomes the hard

sphere interaction occurring at contact FP = FHS. This is calculated through the potential-

free algorithm of [1, 2] in which the overlap between pairs of particles is corrected by moving

the particles with equal force along the line of centres, back to contact. In order to calculate

the stress, the algorithm directly calculates the pairwise interparticle forces that would have

resulted in the hard sphere displacements during the course of a time step [1]. Therefore
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FHS = −6πηR(∆xHS/∆t)

i.e. the average Stokes drag on the particle during the course of the hard-sphere dis-

placement. Once the interparticle forces from each collision are known, they can be used to

calculate the stress matrix[1] according to:

〈 Σ〉 = −N
〈

xFP
〉

We should note that at rest and for relatively low Pe, Brownian Dynamics simulations

qualitatively capture experimental stresses and particle motions, even with the absence of

hydrodynamics [1], although stresses cannot be quantitatively compared. We can further

note that at at high volume fractions long range hydrodynamics can be partly screened

and that lubrication effects leading to shear thickening may become important. However,

the fact that shear thickening is absent in our experiments (in the regime studied), further

supports our observation that BD simulations describe well the experiments.

In order to have greater clarity of the structural information and avoid crystallization

under shear [3], polydispersity was added to the simulations, which is represented by a

Gaussian distribution of radii with a rms value of 10%. Runs with N = 1005 and 4860

particles were examined by averaging data sets over multiple oscillations (30-100) after

reaching a steady state (typically 10 oscillations). We use a time step of 10−4τB for Pe < 1

(and rest), which scales to 10−4 per unit strain for Pe > 1 [1]. Initial configurations were

constructed by quenching from a dilute liquid state by appropriately increasing the particle

size. The system was then properly equilibrated at rest allowing for a steady state to be

reached by following the osmotic pressure and particle mean square displacements until the

both remained stable (typically after about 50τB). However, steady states under non-linear

shear were found to be generally independent of the initial conditions.

MICROSCOPIC ANALYSIS

Using the positions of the particles from simulations, we are able to calculate structural

and dynamic properties. We use the radial pair distribution function, g(r), for the descrip-

tion of the microscopic structure. In the main text, we quantify the structural anisotropy

under shear by taking the projection of the radial distribution function, g(r), in the velocity-
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gradient (xy) plane of the applied shear. In order to highlight the distortions, the projection

is restricted to a distance of 0.7 radii from the plane.

The Mean Squared Displacement (MSD) describes the single particle dynamics. For

example in the x axis:

〈∆x2(τ )〉N,t =
1

N

〈

N
∑

i=1

[xi(t + τ )− xi(t)]
2

〉

t

with xi is the position of a particle i in the x axis and N the total number of particles.

In our case, xi is the position the particle calculated after subtraction of affine motion due

to shear. In the text we show and discuss the displacements only the vorticity (z) direction,

however the velocity (x) and velocity gradient (y) give similar results. An effective diffusion

coefficient defined within the period as Deff = 〈∆z2(T )〉N,t /T (see fig 4) may convey the

changes in microscopic motions during the period of a single oscillation. Note that since

during an oscillation period shear rate varies, the displacements vary as well and therefore

Deff cannot be described as a simple diffusivity.

TIME-SCALES

We have used a combination of experimental oscillatory shear rheometry and Brownian

Dynamics (BD) simulations in a wide range of frequencies, ω, non-dimensionalized in the

dilute regime by Pe0ω = ωτB , with τB = R2/D0 and D0 = kBT/6πηR the free Stokes-

Einstein-Sutherland diffusion coefficient. However, the short time diffusion slows down with

volume fraction due to HIs and thus we use a ϕ dependent short-time self diffusion coefficient,

Ds(ϕ), [4] in a Peω = ωR2/Ds(ϕ). Since in the BD simulations HI are excluded, the

oscillation frequency is non-dimesionalized by Peω.
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