34 research outputs found

    Holocene Vegetation, Climate, and Carbon History on Western Kodiak Island, Alaska

    Get PDF
    At Phalarope Pond, western Kodiak Island, a multidisciplinary study using pollen and spores, macrofossils, stable isotopes, and carbon accumulation provides the Holocene vegetation and climate history following the deglaciation that began over 16,000 cal years ago (yr BP). Following a cold and dry Younger Dryas, a warm and wet early Holocene was characterized by abundant ferns in a sedge tundra environment with maximum carbon accumulation, similar to high latitude peatlands globally. About 8,700 cal yr BP sedge and ferns declined and climate remained warm as drier conditions prevailed, limiting carbon sequestration. The abrupt shift in D/H isotopes of about 60% indicates a shift to cooler conditions or a more distal moisture source. Neoglaciation beginning about 3,700 cal yr BP is evident from increases in Artemisia, Empetrum and Betula, signifying cooler conditions, while Alnus declines, paralleling regional trends

    Late-glacial and Holocene Vegetation and Climate Variability, Including Major Droughts, in the Sky Lakes Region of Southeastern New York State

    Get PDF
    Sediment cores from Lakes Minnewaska and Mohonk in the Shawangunk Mountains of southeastern New York were analyzed for pollen, plantmacrofossils, macroscopic charcoal, organic carbon content, carbon isotopic composition, carbon/nitrogen ratio, and lithologic changes to determine the vegetation and landscape history of the greater Catskill Mountain region since deglaciation. Pollen stratigraphy generally matches the New England pollen zones identified by Deevey (1939) and Davis (1969), with boreal genera (Picea, Abies) present during the late Pleistocene yielding to a mixed Pinus, Quercus and Tsuga forest in the early Holocene. Lake Minnewaska sediments record the Younger Dryas and possibly the 8.2 cal kyr BP climatic events in pollen and sediment chemistry along with an ~1400 cal yr interval of wet conditions (increasing Tsuga and declining Quercus) centered about 6400 cal yr BP. BothMinnewaska andMohonk reveal a protracted drought interval in themiddle Holocene, ~5700-4100 cal yr BP, during which Pinus rigida colonized the watershed, lake levels fell, and frequent fires led to enhanced hillslope erosion. Together, the records show at least three wet-dry cycles throughout the Holocene and both similarities and differences to climate records in New England and central New York. Drought intervals raise concerns for water resources in the New York City metropolitan area and may reflect a combination of enhanced La Nia, negative phase NAO, and positive phase PNA climatic patterns and/or northward shifts of storm tracks

    A Deglacial and Holocene Record of Climate Variability in South-Central Alaska from Stable Oxygen Isotopes and Plant Macrofossils in Peat

    Get PDF
    We used stable oxygen isotopes derived from bulk peat (delta-O-18(sub TOM) in conjunction with plant macrofossils and previously published carbon accumulation records, in a approximately14,500 cal yr BP peat core (HT Fen) from the Kenai lowlands in south-central Alaska to reconstruct the climate history of the area. We find that patterns are broadly consistent with those from lacustrine records across the region, and agree with the interpretation that major shifts in delta-O-18(sub TOM) values indicate changes in strength and position of the Aleutian Low (AL), a semi-permanent low-pressure cell that delivers winter moisture to the region. We find decreased strength or a more westerly position of the AL (relatively higher delta-O-18(sub TOM) values) during the Bolling-Allerod, Holocene Thermal Maximum (HTM), and late Holocene, which also correspond to warmer climate regimes. These intervals coincide with greater peat preservation and enhanced carbon (C) accumulation rates at the HT Fen and with peatland expansion across Alaska. The HTM in particular may have experienced greater summer precipitation as a result of an enhanced Pacific subtropical high, a pattern consistent with modern delta-O-18 values for summer precipitation. The combined warm summer temperatures and greater summer precipitation helped promote the observed rapid peat accumulation. A strengthened AL (relatively lower delta-O-18(sub TOM) values) is most evident during the Younger Dryas, Neoglaciation, and the Little Ice Age, consistent with lower peat preservation and C accumulation at the HT Fen, suggesting less precipitation reaches the leeward side of the Kenai Mountains during periods of enhanced AL strength. The peatlands on the Kenai Peninsula thrive when the AL is weak and the contribution of summer precipitation is higher, highlighting the importance of precipitation seasonality in promoting peat accumulation. This study demonstrates that delta-O-18(sub TOM) values in peat can be applied toward understand large-scale shifts in atmospheric circulation over millennial timescales

    Holocene Vegetation, Climate, and Carbon History on Western Kodiak Island, Alaska

    Get PDF
    At Phalarope Pond, western Kodiak Island, a multidisciplinary study using pollen and spores, macrofossils, stable isotopes, and carbon accumulation provides the Holocene vegetation and climate history following the deglaciation that began over 16,000 cal years ago (yr BP) [years Before Present, as calibrated from 1950]. Following a cold and dry Younger Dryas, a warm and wet early Holocene was characterized by abundant ferns in a sedge tundra environment with maximum carbon accumulation, similar to high latitude peatlands globally. About 8,700 cal yr BP sedge and ferns declined and climate remained warm as drier conditions prevailed, limiting carbon sequestration. The abrupt shift in D/H (Deuterium/Hydrogen) isotopes of about 60 percent indicates a shift to cooler conditions or a more distal moisture source. Neoglaciation beginning about 3,700 cal yr BP is evident from increases in Artemisia, Empetrum and Betula, signifying cooler conditions, while Alnus declines, paralleling regional trends

    A novel framework for quantifying past methane recycling by Sphagnum-methanotroph symbiosis using carbon and hydrogen isotope ratios of leaf wax biomarkers

    Get PDF
    The concentration of atmospheric methane is strongly linked to variations in Earth's climate. Currently, we can directly reconstruct the total atmospheric concentration of methane, but not individual terms of the methane cycle. Northern wetlands, dominated by Sphagnum, are an important contributor of atmospheric methane, and we seek to understand the methane cycle in these systems. We present a novel method for quantifying the proportion of carbon Sphagnum assimilates from its methanotrophic symbionts using stable isotope ratios of leaf-wax biomarkers. Carbon isotope ratios of Sphagnum compounds are determined by two competing influences, water content and the isotope ratio of source carbon. We disentangled these effects using a combined hydrogen and carbon isotope approach. We constrained Sphagnum water content using the contrast between the hydrogen isotope ratios of Sphagnum and vascular plant biomarkers. We then used Sphagnum water content to calculate the carbon isotope ratio of Sphagnum's carbon pool. Using a mass balance equation, we calculated the proportion of recycled methane contributed to the Sphagnum carbon pool, “PRM.” We quantified PRM in peat monoliths from three microhabitats in the Mer Bleue peatland complex. Modern studies have shown that water table depth and vegetation have strong influences on the peatland methane cycle on instrumental time scales. With this new approach, δ13C of Sphagnum compounds are now a useful tool for investigating the relationships among hydrology, vegetation, and methanotrophy in Sphagnum peatlands over the time scales of entire peatland sediment records, vital to our understanding of the global carbon cycle through the Late Glacial and Holocene

    Cold Reversal on Kodiak Island, Alaska, Correlated with the European Younger Dryas by Using Variations of Atmospheric C-14 Content

    Get PDF
    High-resolution AMS (accelerator-mass-spectrometer) radiocarbon dating was performed on late-glacial macrofossils in lake sediments from Kodiak Island, Alaska, and on shells in marine sediments from southwest Sweden. In both records, a dramatic drop in radiocarbon ages equivalent to a rise in the atmospheric C-14 by approximately 70%. coincides with the beginning of the cold period at 11000 yr B.P. (C-14 age). Thus our results show that a close correlation between climatic records around the globe is possible by using a global signature of changes in atmospheric C-14 content

    Sediment Starvation Destroys New York City Marshes' Resistance to Sea Level Rise

    Get PDF
    New York City (NYC) is representative of many vulnerable coastal urban populations, infrastructures, and economies threatened by global sea level rise. The steady loss of marshes in NYC's Jamaica Bay is typical of many urban estuaries worldwide. Essential to the restoration and preservation of these key wetlands is an understanding of their sedimentation. Here we present a reconstruction of the history of mineral and organic sediment fluxes in Jamaica Bay marshes over three centuries, using a combination of density measurements and a detailed accretion model. Accretion rate is calculated using historical land use and pollution markers, through a wide variety of sediment core analyses including geochemical, isotopic, and paleobotanical analyses. We find that, since 1800 CE, urban development dramatically reduced the input of marsh stabilizing mineral sediment. However, as mineral flux decreased, organic matter flux increased. While this organic accumulation increase allowed vertical accumulation to outpace sea level, reduced mineral content causes structural weakness and edge failure. Marsh integrity now requires mineral sediment addition to both marshes and subsurface channels and borrow pits, a solution applicable to drowning estuaries worldwide. Integration of marsh mineral/organic accretion history with modeling provides parameters for marsh preservation at specific locales with sea level rise
    corecore