7 research outputs found

    Predicting the severity of the grass pollen season and the effect of climate change in Northwest Europe

    Get PDF
    Allergic rhinitis is an inflammation in the nose caused by overreaction of the immune system to allergens in the air. Managing allergic rhinitis symptoms is challenging and requires timely intervention. The following are major questions often posed by those with allergic rhinitis: How should I prepare for the forthcoming season? How will the season's severity develop over the years? No country yet provides clear guidance addressing these questions. We propose two previously unexplored approaches for forecasting the severity of the grass pollen season on the basis of statistical and mechanistic models. The results suggest annual severity is largely governed by preseasonal meteorological conditions. The mechanistic model suggests climate change will increase the season severity by up to 60%, in line with experimental chamber studies. These models can be used as forecasting tools for advising individuals with hay fever and health care professionals how to prepare for the grass pollen season

    Spatial and Temporal Analysis of the Microbial Community in Slow Sand Filters Used for Treating Horticultural Irrigation Water

    No full text
    An experimental slow sand filter (SSF) was constructed to study the spatial and temporal structure of a bacterial community suppressive to an oomycete plant pathogen, Phytophthora cryptogea. Passage of water through the mature sand column resulted in complete removal of zoospores of the plant pathogen. To monitor global changes in the microbial community, bacterial and fungal numbers were estimated on selective media, direct viable counts of fungal spores were made, and the ATP content was measured. PCR amplification of 16S rRNA genes and denaturing gradient gel electrophoresis (DGGE) were used to study the dynamics of the bacterial community in detail. The top layer (1 cm) of the SSF column was dominated by a variable and active microbial population, whereas the middle (50 cm) and bottom (80 cm) layers were dominated by less active and diverse bacterial populations. The major changes in the microbial populations occurred during the first week of filter operation, and these populations then remained to the end of the study. Spatial and temporal nonlinear mapping of the DGGE bands provided a useful visual representation of the similarities between SSF samples. According to the DGGE profile, less than 2% of the dominating bands present in the SSF column were represented in the culturable population. Sequence analysis of DGGE bands from all depths of the SSF column indicated that a range of bacteria were present, with 16S rRNA gene sequences similar to groups such as Bacillus megaterium, Cytophaga, Desulfovibrio, Legionella, Rhodococcus rhodochrous, Sphingomonas, and an uncharacterized environmental clone. This study describes the characterization of the performance, and microbial composition, of SSFs used for the treatment of water for use in the horticultural industry. Utilization of naturally suppressive population of microorganisms either directly or by manipulation of the environment in an SSF may provide a more reproducible control method for the future

    Differences in microbial activity and microbial populations of peat associated with suppression of damping-off disease caused by Pythium sylvaticum

    No full text
    The microbiological characteristics associated with disease-suppressive peats are unclear. We used a bioassay for Pythium sylvaticum-induced damping-off of cress seedlings to identify conducive and suppressive peats. Microbial activity in unconditioned peats was negatively correlated with the counts of P. sylvaticum at the end of the bioassay. Denaturing gradient gel electrophoresis (DGGE) profiling and clone library analyses of small-subunit rRNA gene sequences from two suppressive and two conducive peats differed in the bacterial profiles generated and the diversity of sequence populations. There were also significant differences between bacterial sequence populations from suppressive and conducive peats. The frequencies of a number of microbial groups, including the Rhizobium-Agrobacterium group (specifically sequences similar to those for the genera Ochrobactrum and Zoogloea) and the Acidobacteria, increased specifically in the suppressive peats, although no single bacterial group was associated with disease suppression. Fungal DGGE profiles varied little over the course of the bioassay; however, two bands associated specifically with suppressive samples were detected. Sequences from these bands corresponded to Basidiomycete yeast genera. Although the DGGE profiles were similar, fungal sequence diversity also increased during the bioassay. Sequences highly similar to those of Cryptococcus increased in relative abundance during the bioassay, particularly in the suppressive samples. This study highlights the importance of using complementary approaches to molecular profiling of complex populations and provides the first report that basidiomycetous yeasts may be associated with the suppression of Pythium-induced diseases in peats

    Variation in microbial communities colonizing horticultural slow sand filter beds : implications for filter function

    No full text
    The effect of microbial colonization on the function and rejuvenation of slow sand filters was investigated using culture-independent profiling. Colonization resulted in significant reduction in filter pore size, which may be important in order to fully remove pathogens, but was not associated with a specific microbial component. Communities were highly variable, and no common microbial groups were found in effective filters. Bacterial community composition was affected by sand particle size, although high levels of microbial turnover during filter maturation suggested that this was unlikely to have a major influence on community composition. The composition of microbial inoculum from a previous filter could not be maintained through a cycle of culture, storage and re-culture. Furthermore, no significant proportion of the inoculum persisted in filter maturity, and no advantages in terms of time to filter maturation or final filter efficiency were evident. These results may explain why filtration is such an effective and robust water treatment and emphasize the need for further research on the mechanisms involved in pathogen elimination
    corecore