56 research outputs found

    Direct democracy - dillemas and perpectives

    Get PDF
    ΠšΡ€Π°Ρ˜ XX ΠΈ ΠΏΠΎΡ‡Π΅Ρ‚Π°ΠΊ XXI Π²Π΅ΠΊΠ° ΠΎΠ±Π΅Π»Π΅ΠΆΠΈΠ»Π΅ су Π΄Ρ€Π°ΠΌΠ°Ρ‚ΠΈΡ‡Π½Π΅ ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅ Π½Π° Π³Π»ΠΎΠ±Π°Π»Π½ΠΎΠΌ ΠΏΠ»Π°Π½Ρƒ. ΠŸΡ€ΠΎΡ†Π΅ΡΠΈ Π΄Π΅ΠΌΠΎΠΊΡ€Π°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅, дСмократскС Ρ‚Ρ€Π°Π½ΡΡ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ˜Π΅ ΠΈ ΠΊΠΎΠ½ΡΠΎΠ»ΠΈΠ΄Π°Ρ†ΠΈΡ˜Π΅ Π΄Π΅ΠΌΠΎΠΊΡ€Π°Ρ‚ΠΈΡ˜Π΅, Π·Π°Ρ…Π²Π°Ρ‚ΠΈΠ»ΠΈ су Π΄ΠΎ Ρ‚Π°Π΄Π° Ρ‚ΠΎΡ‚Π°Π»ΠΈΡ‚Π°Ρ€Π½Π΅ комунистичкС ΠΏΠΎΡ€Π΅Ρ‚ΠΊΠ΅ Π¦Π΅Π½Ρ‚Ρ€Π°Π»Π½Π΅ ΠΈ Π˜ΡΡ‚ΠΎΡ‡Π½Π΅ Π•Π²Ρ€ΠΎΠΏΠ΅, Π΄Π° Π±ΠΈ ΠΏΠΎΡ‚ΠΎΠΌ ΡƒΠ·Π΅Π»ΠΈ ΠΌΠ°Ρ…Π° ΠΈ Ρƒ Π΄Ρ€ΡƒΠ³ΠΈΠΌ Π΄Π΅Π»ΠΎΠ²ΠΈΠΌΠ° свСта. Нови ΠΎΠ±Π»ΠΈΡ†ΠΈ Π΄Ρ€ΡƒΡˆΡ‚Π²Π΅Π½ΠΈΡ… ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° ΡƒΠ· Ρ€ΡƒΡˆΠ΅ΡšΠ΅ Π΄ΠΎΡ‚Π°Π΄Π°ΡˆΡšΠΈΡ… Π±Π°Ρ€ΠΈΡ˜Π΅Ρ€Π° ΠΈ ΠΏΡ€Π°Ρ‚Π΅Ρ›ΠΈ β€žΠ΄Π΅ΠΌΠΎΠΊΡ€Π°Ρ‚ΡΠΊΠΈ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚β€œ, ΠΎΡ‚Π²ΠΎΡ€ΠΈΠ»ΠΈ су простор Π·Π° Ρ€Π΅Π΄ΠΈΠ·Π°Ρ˜Π½ΠΈΡ€Π°ΡšΠ΅ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈΡ… ΠΈ ΡƒΠ²ΠΎΡ’Π΅ΡšΠ΅ Π½ΠΎΠ²ΠΈΡ… дСмократских установа. На ΠΏΠΎΡ‡Π΅Ρ‚ΠΊΡƒ XXI Π²Π΅ΠΊΠ° Π½Π°Ρ€ΠΎΠ΄Π½Π΅ ΠΈΠ½ΠΈΡ†ΠΈΡ˜Π°Ρ‚ΠΈΠ²Π΅ ΠΈ Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Π΄ΡƒΠΌΠΈ Π΄ΠΎΠ±ΠΈΡ˜Π°Ρ˜Ρƒ Π½Π° ΠΏΡƒΠ½ΠΎΠΌ Π·Π½Π°Ρ‡Π°Ρ˜Ρƒ, Π° Π³Ρ€Π°Ρ’Π°Π½ΠΈ Π΄ΠΎΠ±ΠΈΡ˜Π°Ρ˜Ρƒ свС ΡˆΠΈΡ€Π΅ могућности Π΄Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ ΠΏΠ°Ρ€Ρ‚ΠΈΡ†ΠΈΠΏΠΈΡ€Π°Ρ˜Ρƒ Ρƒ Π΄ΠΎΠ½ΠΎΡˆΠ΅ΡšΡƒ ΠΏΠΎΠ»ΠΈΡ‚ΠΈΡ‡ΠΊΠΈΡ… ΠΎΠ΄Π»ΡƒΠΊΠ°. ΠˆΠ°Ρ‡Π°ΡšΠ΅ΠΌ ΡšΠΈΡ…ΠΎΠ²ΠΈΡ… ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½ΠΈΡ… ΠΊΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚Π° ΠΈ ΠΎΠ΄Π»ΡƒΠΊΠ΅ којС сС доносС ΠΎΠ²ΠΈΠΌ ΠΏΡƒΡ‚Π΅ΠΌ ΠΈΠΌΠ°Ρ˜Ρƒ свС Π²Π΅Ρ›Ρƒ ΠΏΠΎΠ»ΠΈΡ‚ΠΈΡ‡ΠΊΡƒ Ρ‚Π΅ΠΆΠΈΠ½Ρƒ. Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ†ΠΈΠΎΠ½Π°Π»Π½ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΈ Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½Π΅ Π΄Π΅ΠΌΠΎΠΊΡ€Π°Ρ‚ΠΈΡ˜Π΅ сС ΡƒΠ³Ρ€Π°Ρ’ΡƒΡ˜Ρƒ Ρƒ свС Π²Π΅Ρ›ΠΈ Π±Ρ€ΠΎΡ˜ ΠΏΠΎΠ»ΠΈΡ‚ΠΈΡ‡ΠΊΠΈΡ… систСма ΡˆΠΈΡ€ΠΎΠΌ свСта. ΠšΡ™ΡƒΡ‡Π½ΠΈ Ρ€Π°Π·Π»ΠΎΠ³ ΠΎΠ²ΠΎΠ³Π° Ρ‚Ρ€Π΅Π½Π΄Π° Π»Π΅ΠΆΠΈ Ρƒ Π½Π°ΡΡ‚ΠΎΡ˜Π°ΡšΡƒ Π΄Π° сС ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ Π³Ρ€Π°Ρ’Π°Π½Π° ΠΈ ΠΏΠΎΠ»ΠΈΡ‚ΠΈΡ‡ΠΊΠΈΡ… Π°Π³Π΅Π½Π°Ρ‚Π° ΠΊΠ°ΠΊΠΎ Π±ΠΈ сС ΠΏΠΎΠ²Ρ€Π°Ρ‚ΠΈΠ»ΠΎ ΠΏΠΎΡ™ΡƒΡ™Π°Π½ΠΎ ΠΏΠΎΠ²Π΅Ρ€Π΅ΡšΠ΅ Ρƒ дСмократски ΠΎΠ±Π»ΠΈΠΊ Π²Π»Π°Π΄Π°Π²ΠΈΠ½Π΅. Π”ΠΈΡ€Π΅ΠΊΡ‚Π½Π° Π΄Π΅ΠΌΠΎΠΊΡ€Π°Ρ‚ΠΈΡ˜Π° Π½Π΅ΠΈΠ·Π±Π΅ΠΆΠ½ΠΎ доприноси ΠΈ Ρ˜Π°Ρ‡Π° мСђуграђанскС Π²Π΅Π·Π΅, Π°ΡΠΎΡ†ΠΈΡ˜Π°Ρ‚ΠΈΠ²Π½Ρƒ Π΄Π΅ΠΌΠΎΠΊΡ€Π°Ρ‚ΠΈΡ˜Ρƒ, ΡΠΎΡ†ΠΈΡ˜Π°Π»Π½ΠΈ ΠΊΠ°ΠΏΠΈΡ‚Π°Π»: Π½Π°Ρ˜Π·Π½Π°Ρ‡Π°jнијС ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π΅ Π·Π° ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡΠ°ΡšΠ΅ дСмократског ΠΏΠΎΡ€Π΅Ρ‚ΠΊΠ°. Π”ΠΈΡ€Π΅ΠΊΡ‚Π½Π° Π΄Π΅ΠΌΠΎΠΊΡ€Π°Ρ‚ΠΈΡ˜Π° ΠΈ ΡƒΡ‡Π΅ΡˆΡ›Π΅ Π³Ρ€Π°Ρ’Π°Π½Π° Ρƒ Π·Π°ΠΊΠΎΠ½ΠΎΠ΄Π°Π²Π½ΠΈΠΌ ΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π½ΠΈΠΌ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π°ΠΌΠ°, ΠΊΠ°ΠΎ ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½Π° грађанска ΠΏΠ°Ρ€Ρ‚ΠΈΡ†ΠΈΠΏΠ°Ρ†ΠΈΡ˜Π° Ρƒ јавним пословима Π½Π΅ΠΈΠ·Π±Π΅ΠΆΠ½ΠΎ Π²ΠΎΠ΄Π΅ Π΄Π΅ΠΌΠΎΠΊΡ€Π°Ρ‚ΡΠΊΠΎΡ˜ ΡΠΎΡ†ΠΈΡ˜Π°Π»ΠΈΠ·Π°Ρ†ΠΈΡ˜ΠΈ. Из Ρ‚ΠΎΠ³ Ρ€Π°Π·Π»ΠΎΠ³Π°, Ρ†Π΅Π½Ρ‚Ρ€Π°Π»Π½Π΅ прСдставничкС ΠΈΠ½ΡΡ‚ΠΈΡ‚ΡƒΡ†ΠΈΡ˜Π΅, ΠΏΠΎΠΏΡƒΡ‚ ΠΏΠ°Ρ€Π»Π°ΠΌΠ΅Π½Ρ‚Π°, нису Π΄ΠΎΠ²ΠΎΡ™Π°Π½ Π³Π°Ρ€Π°Π½Ρ‚ опстанка дСмократских врСдности Ρƒ јСдном Π΄Ρ€ΡƒΡˆΡ‚Π²Ρƒ. ΠŸΠ°Ρ€Ρ‚ΠΈΡ†ΠΈΠΏΠ°Ρ‚ΠΈΠ²Π½ΠΈ ΠΈ Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎ-дСмократски инструмСнти ΠΎΠ΄ посСбног су Π·Π½Π°Ρ‡Π°Ρ˜Π° Π·Π° грађанску ΡΠΎΡ†ΠΈΡ˜Π°Π»ΠΈΠ·Π°Ρ†ΠΈΡ˜Ρƒ ΠΈ ΠΈΠ·Π³Ρ€Π°Π΄ΡšΡƒ дСмократскС ΠΏΠΎΠ»ΠΈΡ‚ΠΈΡ‡ΠΊΠ΅ ΠΊΡƒΠ»Ρ‚ΡƒΡ€Π΅. Π£ саврСмСним Π΄Π΅ΠΌΠΎΠΊΡ€Π°Ρ‚ΠΈΡ˜Π°ΠΌΠ° сС ΡƒΠ³Π»Π°Π²Π½ΠΎΠΌ ΠΈΠ½ΡΡ‚ΠΈΡ‚ΡƒΡ†ΠΈΠΎΠ½Π°Π»ΠΈΠ·ΡƒΡ˜Π΅ Ρ…ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΈ ΠΌΠΎΠ΄Π΅Π» који с јСднС странС ΠΎΠ±ΡƒΡ…Π²Π°Ρ‚Π° прСдставничку Π΄Π΅ΠΌΠΎΠΊΡ€Π°Ρ‚ΠΈΡ˜Ρƒ, Π΄ΠΎΠΊ с Π΄Ρ€ΡƒΠ³Π΅ странС ΠΎΠ½Π° Π±ΠΈΠ²Π° Π΄ΠΎΠΏΡƒΡšΠ΅Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΠΌ ΠΎΠ±Π»ΠΈΡ†ΠΈΠΌΠ° Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½Π΅ Π΄Π΅ΠΌΠΎΠΊΡ€Π°Ρ‚ΠΈΡ˜Π΅, ΠΏΠΎΠΏΡƒΡ‚ Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Π΄ΡƒΠΌΠ° ΠΈ Π½Π°Ρ€ΠΎΠ΄Π½ΠΈΡ…, грађанских ΠΈΠ½ΠΈΡ†ΠΈΡ˜Π°Ρ‚ΠΈΠ²Π°The turn of the 21st century was marked by dramatic changes on a global scale. The processes of democratisation, democratic transformations and consolidations of democracy swept through the hitherto totalitarian communist regimes in Central and Eastern Europe, gaining additional momentum in other parts of the world. New forms of social interactions, combined with the breakdown of previous barriers and the accompanying β€œdemocratic deficitβ€œ opened a space for re-designing of the existing and introduction of new democratic institutions. At the beginning of the 21st century, people's initiatives and referenda reach their full significance, while citizens enjoy increasing opportunities to actively participate in political decision-making. Along with the increase of their cognitive capacities, decisions made in this manner gain political weight. The institutional mechanisms of direct democracy are incorporated in a growing number of political systems around the world. The key reason behind this trend lies in the attempt to create a connection between citizens and political agents in order to restore the shaken confidence in the democratic system. Direct democracy inevitably contributes to and bolsters links among citizens, associative democracy, social capital – the key components for the successful functioning of democracy. Direct democracy and civil participation in public affairs inevitably lead to the democratic socialisation. For this reason, the central representative institutions, such as the parliament, do not provide sufficient guarantee for the survival of democratic values in society. The participatory and direct democracy instruments are of particular importance for civil socialisation and political culture creation. The model institutionalised in most contemporary democracies is a hybrid one including participatory democracy on the one hand, while on the other being complemented by different forms of direct democracy, such as referenda and people's, or civic initiative

    Direct torque control of induction motor in field weakening regime

    Get PDF
    ΠŸΡ€Π΅Π΄ΠΌΠ΅Ρ‚ Π½Π°ΡƒΡ‡Π½Π΅ расправС Ρƒ ΠΎΠ²ΠΎΠΌ Ρ€Π°Π΄Ρƒ јС Ρ€Π°Π·Π²ΠΎΡ˜ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π·Π° Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎ ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ΅ асинхроним ΠΌΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρƒ Ρ€Π΅ΠΆΠΈΠΌΡƒ ΡΠ»Π°Π±Ρ™Π΅ΡšΠ° ΠΏΠΎΡ™Π°, који Ρ‚Ρ€Π΅Π±Π° Π΄Π° ΠΎΠ±Π΅Π·Π±Π΅Π΄ΠΈ максималнС пСрформансС ΠΏΡ€ΠΈ Ρ€Π°Π΄Ρƒ са Π²Π΅Π»ΠΈΠΊΠΈΠΌ Π±Ρ€Π·ΠΈΠ½Π°ΠΌΠ°. Π£ ΠΏΡ€Π²ΠΎΠΌ ΠΏΠΎΠ³Π»Π°Π²Ρ™Ρƒ Π½Π°Π²Π΅Π΄Π΅Π½ΠΈ су ΠΌΠΎΡ‚ΠΈΠ²ΠΈ Π·Π° ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ΅, Π΄Π΅Ρ‚Π°Ρ™Π½ΠΎ јС Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Π½Π° стручна Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π° ΠΈ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½ΠΈ су Π½Π΅Ρ€Π΅ΡˆΠ΅Π½ΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΈ Π²Π΅Π·Π°Π½ΠΈ Π·Π° ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½ΠΎ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ΅. Π˜ΡΡ‚Π°ΠΊΠ½ΡƒΡ‚Π΅ су ΠΌΠ°ΡšΠΊΠ°Π²ΠΎΡΡ‚ΠΈ Π΄ΠΎΡΠ°Π΄Π°ΡˆΡšΠΈΡ… Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π° Ρƒ ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΡƒ асинхроним ΠΌΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρƒ Ρ€Π΅ΠΆΠΈΠΌΡƒ ΡΠ»Π°Π±Ρ™Π΅ΡšΠ° ΠΏΠΎΡ™Π°, ΠΊΠ°ΠΎ ΠΈ смСрницС Π·Π° Ρ€Π°Π·Π²ΠΎΡ˜ Π½ΠΎΠ²Π΅ структурС Π·Π° Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎ ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ΅ која Ρ›Π΅ Π΄Π° Ρƒ потпуности искористи располоТивС рСсурсС ΠΌΠΎΡ‚ΠΎΡ€Π° ΠΈ ΠΏΡ€ΠΈΠ΄Ρ€ΡƒΠΆΠ΅Π½ΠΎΠ³ погонског ΠΏΡ€Π΅Ρ‚Π²Π°Ρ€Π°Ρ‡Π°, Ρ‚Π΅ јС Π΄Π°Ρ‚ ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜ Π΄Π°Ρ™Π΅Π³ излагања. Π”Ρ€ΡƒΠ³ΠΎ ΠΏΠΎΠ³Π»Π°Π²Ρ™Π΅ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ Π±Π°Π²ΠΈ сС Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°ΡšΠ΅ΠΌ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π° асинхроног ΠΌΠΎΡ‚ΠΎΡ€Π° ΠΈ ΠΏΡ€ΠΈΠ΄Ρ€ΡƒΠΆΠ΅Π½ΠΎΠ³ погонског ΠΏΡ€Π΅Ρ‚Π²Π°Ρ€Π°Ρ‡Π° ΠΏΡ€ΠΈΠ»Π°Π³ΠΎΡ’Π΅Π½ΠΈΡ… Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎΠΌ ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΡƒ. MΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈ су ΡƒΠ· ΡƒΠΎΠ±ΠΈΡ‡Π°Ρ˜Π΅Π½Π΅ ΠΈΠ΄Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ којС сС користС Ρƒ ΠΎΠΏΡˆΡ‚ΠΎΡ˜ Ρ‚Π΅ΠΎΡ€ΠΈΡ˜ΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… машина. Π£ ΠΎΠ²ΠΎΠΌ Π΄Π΅Π»Ρƒ описан јС ΠΈ поступак ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° погонским ΠΏΡ€Π΅Ρ‚Π²Π°Ρ€Π°Ρ‡Π΅ΠΌ заснован Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ ΠΌΠΎΠ΄ΡƒΠ»Π°Ρ†ΠΈΡ˜Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π°ΠΏΠΎΠ½Π°. ΠŸΡ€Π΅Π΄ΠΌΠ΅Ρ‚ Ρ‚Ρ€Π΅Ρ›Π΅Π³ ΠΏΠΎΠ³Π»Π°Π²Ρ™Π° јС Π°Π½Π°Π»ΠΈΠ·Π° Ρ‚Ρ€Π°Π½Π·ΠΈΡ˜Π΅Π½Ρ‚Π½Π΅ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π½Π΅ карактСристикС асинхронС машинС Ρƒ Ρ€Π΅ΠΆΠΈΠΌΡƒ ΡΠ»Π°Π±Ρ™Π΅ΡšΠ° ΠΏΠΎΡ™Π°. Анализирана јС могућност добијања максималног ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° Ρƒ зависности ΠΎΠ΄ карактСристика погонског ΠΏΡ€Π΅Ρ‚Π²Π°Ρ€Π°Ρ‡Π°. Π˜ΡΡ‚Ρ€Π°ΠΆΠ΅Π½ јС ΡƒΡ‚ΠΈΡ†Π°Ρ˜ ΡΡ‚Ρ€ΡƒΡ˜Π½ΠΎΠ³, напонског, Ρ‚Π΅ истоврСмСног ΡΡ‚Ρ€ΡƒΡ˜Π½ΠΎΠ³ ΠΈ напонског Π»ΠΈΠΌΠΈΡ‚Π° Π½Π° максимални ΠΌΠΎΠΌΠ΅Π½Ρ‚ Ρƒ Ρ€Π΅ΠΆΠΈΠΌΡƒ ΡΠ»Π°Π±Ρ™Π΅ΡšΠ° ΠΏΠΎΡ™Π°. Анализирана јС ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° колапса флукса Ρ€ΠΎΡ‚ΠΎΡ€Π°, која јС послСдица напонског Π»ΠΈΠΌΠΈΡ‚Π° Ρƒ ΡΠ»Π°Π±Ρ™Π΅ΡšΡƒ ΠΏΠΎΡ™Π°. Π£ Ρ‡Π΅Ρ‚Π²Ρ€Ρ‚ΠΎΠΌ ΠΏΠΎΠ³Π»Π°Π²Ρ™Ρƒ Π΄Π΅Ρ‚Π°Ρ™Π½ΠΎ су Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Π½ΠΈ карактСристични приступи ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° асинхроним ΠΌΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρƒ ΡΠ»Π°Π±Ρ™Π΅ΡšΡƒ ΠΏΠΎΡ™Π°. ΠŸΠΎΠ³Π»Π°Π²Ρ™Π΅ сС ΡΠ°ΡΡ‚ΠΎΡ˜ΠΈ ΠΎΠ΄ Ρ‡Π΅Ρ‚ΠΈΡ€ΠΈ Π΄Π΅Π»Π°. ΠŸΡ€Π²ΠΎ јС ΠΈΠ·Π²Π΅Π΄Π΅Π½ ΠΎΠΏΡˆΡ‚ΠΈ ΠΌΠΎΠ΄Π΅Π» вСкторски ΡƒΠΏΡ€Π°Π²Ρ™Π°Π½ΠΎΠ³ асинхроног ΠΌΠΎΡ‚ΠΎΡ€Π°, Π½Π° основу којСг су Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Π½Π΅ Π²Π°Ρ€ΠΈΡ˜Π°Π½Ρ‚Π΅ вСкторског ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° ΠΏΡ€Π΅ΠΌΠ° флуксу Ρ€ΠΎΡ‚ΠΎΡ€Π° ΠΈ флуксу статора Ρƒ ΡΠ»Π°Π±Ρ™Π΅ΡšΡƒ ΠΏΠΎΡ™Π°. Након Ρ‚ΠΎΠ³Π° јС Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Π½ јСдан Ρ‚ΠΈΠΏΠΈΡ‡Π°Π½ Π°Π»Π³ΠΎΡ€ΠΈΡ‚Π°ΠΌ Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎΠ³ ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° Ρƒ ΡΠ»Π°Π±Ρ™Π΅ΡšΡƒ ΠΏΠΎΡ™Π°. На ΠΊΡ€Π°Ρ˜Ρƒ ΠΏΠΎΠ³Π»Π°Π²Ρ™Π° Π°Π½Π°Π»ΠΈΠ·Π° јС Π·Π°ΠΎΠΊΡ€ΡƒΠΆΠ΅Π½Π° мСђусобним ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅ΠΌ карактСристика ΠΎΠ²Π° Ρ‚Ρ€ΠΈ Ρ€Π΅ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½Π° ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›Π° ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚Π° ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° асинхроном машином. Π£ ΠΏΠ΅Ρ‚ΠΎΠΌ ΠΏΠΎΠ³Π»Π°Π²Ρ™Ρƒ истраТСна јС ΠΏΡ€ΠΎΠΌΠ΅Π½Π° ΠΌΠΎΠΌΠ΅Π½Ρ‚Π°, флуксСва статора ΠΈ Ρ€ΠΎΡ‚ΠΎΡ€Π°, клизања, синхронС Π±Ρ€Π·ΠΈΠ½Π΅ ΠΈ ΡΡ‚Ρ€ΡƒΡ˜Π΅ Ρƒ Π»ΠΈΠΌΠΈΡ‚Ρƒ Π½Π°ΠΏΠΎΠ½Π° Ρ‚ΠΎΠΊΠΎΠΌ јСднС ΡƒΠΏΡ€Π°Π²Ρ™Π°Ρ‡ΠΊΠ΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅, Π° Ρƒ Π»ΠΈΠΌΠΈΡ‚Ρƒ Π½Π°ΠΏΠΎΠ½Π°. ИзвСдСн јС ΠΈΠ·Ρ€Π°Π· Π·Π° ΠΏΡ€ΠΎΠΌΠ΅Π½Ρƒ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° Ρƒ Π»ΠΈΠΌΠΈΡ‚Ρƒ Π½Π°ΠΏΠΎΠ½Π° Ρ‚ΠΎΠΊΠΎΠΌ ΡƒΠΏΡ€Π°Π²Ρ™Π°Ρ‡ΠΊΠ΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ Ρƒ ΠΎΠΏΡˆΡ‚Π΅ΠΌ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ. На основу спровСдСнС Π°Π½Π°Π»ΠΈΠ·Π΅, Π½Π° ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»Π°Π½ Π½Π°Ρ‡ΠΈΠ½ јС Ρƒ комплСксној Ρ€Π°Π²Π½ΠΈ ΠΏΡ€ΠΈΠΊΠ°Π·Π°Π½ΠΎ ΠΊΡ€Π΅Ρ‚Π°ΡšΠ΅ ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›ΠΈΡ… ΠΏΠΎΠ»ΠΈΡ„Π°Π·ΠΎΡ€Π° асинхроног ΠΌΠΎΡ‚ΠΎΡ€Π° Ρƒ Ρ€Π΅ΠΆΠΈΠΌΡƒ ΡΠ»Π°Π±Ρ™Π΅ΡšΠ° ΠΏΠΎΡ™Π°. ШСсто ΠΏΠΎΠ³Π»Π°Π²Ρ™Π΅ садрТи синтСзу ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»Π½Π΅ ΡƒΠΏΡ€Π°Π²Ρ™Π°Ρ‡ΠΊΠ΅ структурС Π·Π° Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎ ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ΅ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠΌ Ρƒ ΡΠ»Π°Π±Ρ™Π΅ΡšΡƒ ΠΏΠΎΡ™Π°. Полазна основа Π·Π° Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°ΡšΠ΅ структурС јС Π·Π°Ρ…Ρ‚Π΅Π² Π΄Π° сС располоТиви Π½Π°ΠΏΠΎΠ½ ΠΈΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€Π° Ρƒ потпуности искористи. ΠŸΠΎΡˆΡ‚ΠΎ су Ρƒ напонском Π»ΠΈΠΌΠΈΡ‚Ρƒ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π΅ флукса ΠΈ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° спрСгнутС, ΠΊΠ°ΠΊΠΎ Ρƒ стационарном ΡΡ‚Π°ΡšΡƒ, Ρ‚Π°ΠΊΠΎ ΠΈ Ρƒ ΠΏΡ€Π΅Π»Π°Π·Π½ΠΈΠΌ Ρ€Π΅ΠΆΠΈΠΌΠΈΠΌΠ°, јСдина Ρ„ΠΈΠ·ΠΈΡ‡ΠΊΠΈ нСзависна ΡƒΠΏΡ€Π°Π²Ρ™Π°Ρ‡ΠΊΠ° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Ρ‚Π°Π΄Π° јС Ρ„Π°Π·Π½ΠΈ став (ΡƒΠ³Π°ΠΎ) Π½Π°ΠΏΠΎΠ½Π° статора. Π£ Ρ†ΠΈΡ™Ρƒ Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°ΡšΠ° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π·Π° Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎ ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ΅ Ρƒ ΡΠ»Π°Π±Ρ™Π΅ΡšΡƒ ΠΏΠΎΡ™Π°, ΠΏΡ€Π²ΠΎ јС ΠΈΠ·Π²Π΅Π΄Π΅Π½ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» асинхронС машинС Ρƒ Π»ΠΈΠΌΠΈΡ‚Ρƒ Π½Π°ΠΏΠΎΠ½Π°. УсвојСна јС ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π° Π³Π΅Π½Π΅Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΎΠ³ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° Ρƒ синхроно Ρ€ΠΎΡ‚ΠΈΡ€Π°Ρ˜ΡƒΡ›Π΅ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΌ систСму, Ρ‚Π΅ јС Ρ‚Π°ΠΊΠΎ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½ΠΈ ΠΌΠΎΠ΄Π΅Π» Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½ ΠΈ добијСна јС ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π° прСноса. УсвојСнС сС ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›Π΅ Π°ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Ρ†ΠΈΡ˜Π΅ којС Π·Π½Π°Ρ‚Π½ΠΎ ΠΎΠ»Π°ΠΊΡˆΠ°Π²Π°Ρ˜Ρƒ ΠΈΠ·Π²ΠΎΡ’Π΅ΡšΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π΅ прСноса ΠΈ Π΄Π°Ρ‚Π° јС Π΄Π΅Ρ‚Π°Ρ™Π½Π° Π°Π½Π°Π»ΠΈΠ·Π° оправданости Ρ‚ΠΈΡ… Π°ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Ρ†ΠΈΡ˜Π°, ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅ΠΌ понашања апроксимираног ΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅Ρ‚Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°. На основу ΡƒΡΠ²ΠΎΡ˜Π΅Π½Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π΅ прСноса асинхроног ΠΌΠΎΡ‚ΠΎΡ€Π° ΠΏΡ€ΠΈ Ρ€Π°Π΄Ρƒ са ΠΏΡƒΠ½ΠΈΠΌ Π½Π°ΠΏΠΎΠ½ΠΎΠΌ Ρƒ ΡΠ»Π°Π±Ρ™Π΅ΡšΡƒ ΠΏΠΎΡ™Π°, ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° јС ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»Π½Π° ΡƒΠΏΡ€Π°Π²Ρ™Π°Ρ‡ΠΊΠ° структура Π·Π° Ρ€Π΅Π³ΡƒΠ»Π°Ρ†ΠΈΡ˜Ρƒ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π°, Π° Π·Π°Ρ‚ΠΈΠΌ ΠΈ поступак Π·Π° ΠΎΠ΄Ρ€Π΅Ρ’ΠΈΠ²Π°ΡšΠ΅ ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π° Ρ€Π΅Π³ΡƒΠ»Π°Ρ‚ΠΎΡ€Π° Π·Π° добијањС ΠΆΠ΅Ρ™Π΅Π½ΠΎΠ³ ΠΎΠ΄Π·ΠΈΠ²Π°. Као ΠΏΡ€ΠΎΡ˜Π΅ΠΊΡ‚Π½ΠΈ Π·Π°Ρ…Ρ‚Π΅Π²ΠΈ Π·Π° пСрформансама Ρ€Π΅Π³ΡƒΠ»Π°Ρ‚ΠΎΡ€Π° ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° постављСни су Π±Ρ€Π· апСриодски ΠΎΠ΄Π·ΠΈΠ² ΠΈ Π½ΡƒΠ»Ρ‚Π° Π³Ρ€Π΅ΡˆΠΊΠ° стационарног ΡΡ‚Π°ΡšΠ°. Након синтСзС, добијСнС пСрформансС ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎΠ³ Ρ€Π΅Π³ΡƒΠ»Π°Ρ‚ΠΎΡ€Π° ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° илустрованС су ΠΏΡƒΡ‚Π΅ΠΌ рачунарских ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π°. ΠŸΡƒΡ‚Π΅ΠΌ рачунарских ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π° Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Π½ јС ΠΈ ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π²Π°Ρ€ΠΈΡ˜Π°Ρ†ΠΈΡ˜Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π° Ρ€Π΅Π³ΡƒΠ»Π°Ρ‚ΠΎΡ€Π° ΠΈ Π½Π°ΠΏΠΎΠ½Π° напајања. Π£ наставку јС Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°Π½Π° ΠΈ Π½Π°Π΄Ρ€Π΅Ρ’Π΅Π½Π° структура Π·Π° ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ΅ Π±Ρ€Π·ΠΈΠ½ΠΎΠΌ Ρƒ ΡΠ»Π°Π±Ρ™Π΅ΡšΡƒ ΠΏΠΎΡ™Π°. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° јС структура Ρ€Π΅Π³ΡƒΠ»Π°Ρ‚ΠΎΡ€Π° ΠΈ ΡƒΡΠ²ΠΎΡ˜Π΅Π½ јС поступак Π·Π° ΠΈΠ·Π±ΠΎΡ€ врСдности ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π°. Као ΠΏΡ€ΠΎΡ˜Π΅ΠΊΡ‚Π½ΠΈ Π·Π°Ρ…Ρ‚Π΅Π² Π·Π° пСрформансС Ρ€Π΅Π³ΡƒΠ»Π°Ρ‚ΠΎΡ€Π° Π±Ρ€Π·ΠΈΠ½Π΅ постављСни су стриктно апСриодски ΠΎΠ΄Π·ΠΈΠ² Π±Π΅Π· прСскока, ΠΊΠ°ΠΎ ΠΈ Π½ΡƒΠ»Ρ‚Π° Π³Ρ€Π΅ΡˆΠΊΠ° стационарног ΡΡ‚Π°ΡšΠ°. ΠŸΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΠΏΡ€ΠΎΡ˜Π΅ΠΊΡ‚ΠΎΠ²Π°ΡšΠ° брзинскС ΠΏΠ΅Ρ‚Ρ™Π΅ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈ јС ΡƒΠ²Π°ΠΆΠ΅Π½Π° ΠΈ ΠΏΡ€ΠΎΠΌΠ΅Π½Π° Π»ΠΈΠΌΠΈΡ‚Π° ΠΏΠΎ ΠΏΡ€Π΅Π²Π°Π»Π½ΠΎΠΌ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ. На ΠΊΡ€Π°Ρ˜Ρƒ ΠΏΠΎΠ³Π»Π°Π²Ρ™Π°, пСрформансС ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎΠ³ Ρ€Π΅Π³ΡƒΠ»Π°Ρ‚ΠΎΡ€Π° Π±Ρ€Π·ΠΈΠ½Π΅ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅Π½Π΅ су рачунарском ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜ΠΎΠΌ. ЕкспСримСнтална Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎΠ³ Ρ€Π΅ΡˆΠ΅ΡšΠ° описана јС Ρƒ сСдмом ΠΏΠΎΠ³Π»Π°Π²Ρ™Ρƒ. Као Ρ€Π΅ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΈ, ΠΎΠ΄Π°Π±Ρ€Π°Π½Π° су Ρ‚Ρ€ΠΈ карактСристична Ρ€Π°Π΄Π½Π° Ρ€Π΅ΠΆΠΈΠΌΠ°: ΠΏΡ€Π²ΠΈ, Ρƒ ΠΊΠΎΠΌΠ΅ јС испитиван ΠΎΠ΄Π·ΠΈΠ² Π½Π° ΠΏΡ€Π°Π²ΠΎΡƒΠ³Π°ΠΎΠ½Ρƒ Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½Ρƒ врСдност ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° ΠΏΡ€ΠΈ ΠΊΠΎΠ½ΡΡ‚Π°Π½Ρ‚Π½ΠΎΡ˜ Π±Ρ€Π·ΠΈΠ½ΠΈ ΠΎΠ±Ρ€Ρ‚Π°ΡšΠ°, Π·Π°Ρ‚ΠΈΠΌ Π΄Ρ€ΡƒΠ³ΠΈ, Ρƒ ΠΊΠΎΠΌΠ΅ јС испитивано ΡƒΠ±Ρ€Π·Π°Π²Π°ΡšΠ΅ ΠΏΠΎΠ³ΠΎΠ½Π° Π΄ΠΎ трострукС Π½ΠΎΠΌΠΈΠ½Π°Π»Π½Π΅ Π±Ρ€Π·ΠΈΠ½Π΅ ΠΏΡ€ΠΈ ΠΏΡ€Π°Π²ΠΎΡƒΠ³Π°ΠΎΠ½ΠΎΡ˜ Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½ΠΎΡ˜ врСдности ΠΌΠΎΠΌΠ΅Π½Ρ‚Π°, Ρ‚Π΅ Ρ‚Ρ€Π΅Ρ›ΠΈ, гдјС јС испитан Ρ€Π°Π΄ ΠΏΠΎΠ³ΠΎΠ½Π° са Π·Π°Ρ‚Π²ΠΎΡ€Π΅Π½ΠΎΠΌ ΠΏΠΎΠ²Ρ€Π°Ρ‚Π½ΠΎΠΌ спрСгом ΠΏΠΎ Π±Ρ€Π·ΠΈΠ½ΠΈ. Π Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ СкспСримСнта ΠΏΡ€ΠΈΠΊΠ°Π·Π°Π½ΠΈ су Ρƒ ΠΎΠ±Π»ΠΈΠΊΡƒ осцилоскопских снимака ΠΈ Π΄Π΅Ρ‚Π°Ρ™Π½ΠΎ су комСнтарисани. Π£ осмом ΠΏΠΎΠ³Π»Π°Π²Ρ™Ρƒ (Π—Π°ΠΊΡ™ΡƒΡ‡Π°ΠΊ) истакнути су Π³Π»Π°Π²Π½ΠΈ доприноси ΠΏΠΎΡ˜Π΅Π΄ΠΈΠ½ΠΈΡ… ΠΏΠΎΠ³Π»Π°Π²Ρ™Π° ΠΈ докторскС Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ Ρƒ Ρ†Π΅Π»ΠΈΠ½ΠΈ. Π’Π°ΠΊΠΎΡ’Π΅, ΡƒΠΊΠ°Π·Π°Π½ΠΎ јС ΠΈ Π½Π° ΠΌΠΎΠ³ΡƒΡ›Π΅ ΠΏΡ€Π°Π²Ρ†Π΅ Π΄Π°Ρ™Π΅Π³ Ρ€Π°Π·Π²ΠΎΡ˜Π° Ρƒ Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π°Π½ΠΎΡ˜ области. На ΠΊΡ€Π°Ρ˜Ρƒ Ρ€Π°Π΄Π° Π½Π°Π»Π°Π·ΠΈ сС списак ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½Π΅ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅, Ρ‚Π΅ ΠΏΡ€ΠΈΠ»ΠΎΠ³ који садрТи ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠ° ΠΈΠ·Π²ΠΎΡ’Π΅ΡšΠ° која Π±ΠΈ ΠΎΠΏΡ‚Π΅Ρ€Π΅Ρ‚ΠΈΠ»Π° основни тСкст, ΠΏΠΎΠ΄Π°Ρ‚ΠΊΠ΅ ΠΊΠΎΡ€ΠΈΡˆΡ‚Π΅Π½Π΅ Ρƒ рачунарским ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π°ΠΌΠ°, ΠΊΠ°ΠΎ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΡ‡ΠΊΠΈ опис ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΎΠ³ ΠΏΡ€ΠΎΡ‚ΠΎΡ‚ΠΈΠΏΠ°.Π’he subject of the dissertation is development of an algorithm for direct control of induction motor in field weakening regime, which should provide improved performance when working at high speeds. In the first Chapter motivation for the research is given, available references are analyzed in detail, and unsolved problems in the field of research are identified. Limitations of the existing solutions for induction motor control in field weakening mode are pointed out. Guidelines for the development of new structure for direct control which will fully utilize motor and power converter capabilities are given. The outline of the rest of thesis is presented. The second Chapter of the dissertation starts with the development of mathematical models of induction motor and matched power converter suitable for direct control. Mathematical models are developed with usual approximations used in the general theory of electric machines. The space vector modulation technique for power inverter control is also described in this section. The subject of the third Chapter is the analysis of torque transient characteristicsof an induction machine in field weakening regime. The ability of obtaining the maximum torque dependening on voltage and current limits of a drive is investigated. The influence of current limit, voltage limit, and combined current and voltage limits on torque characteristics in field weakening regime and ability of achieving maximal torque is investigated. The problem of rotor flux collapse, as a consequence of voltage limit in the field weakening mode, is explained in detail. The fourth Chapter analyzes in detail typical approaches for control of induction motors in field weakening regime. The Chapter consists of four parts. In the first part a general model of vector controlled induction motor drive is derived. On the proposed model, various stator and rotor flux vector controls in the field weakening regime are analyzed in the second and the third part of the Chapter. After that, a typical algorithm for direct torque control applicable in the field weakening regime is presented. At the end of the Chapter, all three presented methods are compared to each other. In the fifth Chapter the changes in torque, stator and rotor fluxes, slip and synchronous speed during a single control period at the voltage limit are analyzed. The expression for torque change at voltage limit is derived for the general case. Based on the presented equations, the original representation of induction motor polyphasor trajectories in the field weakening regime is given. The sixth Chapter contains a synthesis of the original control structure for direct torque control in field weakening regime. The proposed structure is based on the requirement to fully utilize available inverter voltage. Since both flux and torque producing components are coupled at the voltage limit, in both steady state and during transients, the only independent control variable is stator voltage phase angle. In order to create an algorithm for direct torque control in field weakening mode, a dynamic model of induction machine at voltage limit is developed first. The model is developed as a modification of generalized mathematical model in the synchronously rotating reference frame. This model is linearized around the operating point, and the induction motor transfer function in field weakening mode is obtained. The adopted approximations are discussed, by comparing behaviors of approximate and full order models using computer simulations. Based on the adopted transfer function, the original control structure of torque regulation is presented. Design performance requirements for torque regulator are zero torque error in steady state and fast transient response. The procedure for creating the control structure and calculating the regulator gains is explained in detail. The key part of the structure is torque regulator with variable gains, i.e., Gain Scheduling torque regulator is used. Performance of the proposed torque controller is illustrated through computer simulations. Impacts of motor parameter changes and supply voltage variations are analyzed through computer simulations too. At the end of the Chapter, the outer speed control loop synthesis procedure is presented. Performance requirements are strictly aperiodic speed response and zero error in steady state. Control structure and parameter tunings are explained in detail. In the proposed structure, the control limits are dynamically changed following the break-down torque changes. Performance of the proposed speed controller is validated by the computer simulation. Experimental verification of the proposed solution is described in seventh Chapter. As a representative, three typical operating modes are verified: first, the response to a rectangular change of torque reference at constant speed, the second mode, in which the motor accelerates and decelerates to the triple rated speed, and the third, where the closed speed loop performance is tested. Experimental results are presented in a form of oscilloscope readings and are discussed in detail. In the eighth Chapter (Conclusion) the major contributions from all chapters and the dissertation in general are highlighted. Possible directions for further work in the field of research are pointed out. Bibliography, mathematical derivations excluded from the main text for clarity, data used in computer simulations, as well as the technical description of the realized prototype are given at the and of the dissertation

    Environmental influence on the safety and reliability of electrical and communication systems

    Get PDF
    Electrical systems may fail due to change in the properties of constituent materials under environmental influence. This failure may engender catastrophic events, such as material damage, environmental disasters or loss of human lives. For example, ships, as complex systems, are exposed to the aggressive nature of the marine environment. The influence of dominant factors on dielectric properties is analyzed in this paper through the relative dielectric constant, and the refractive index. Parameter changes are shown to alter the value of the constant by numerical examples. These different values can result in fatal system failures. Taking into account these facts, the influence of material on the electrical system is illustrated to make the reliability calculation more complex. The results were negative, as shown in the Calculation and results section

    Data-Based Modelling of Significant Wave Height in the Adriatic Sea

    Get PDF
    The paper deals with sea wave modelling based on available data acquired from a satellite-calibrated numerical model. The idea is to use an artificial neural network, as a flexible tool capable of modelling nonlinear processes, for significant wave height (SWH) modelling at a single point in the Adriatic Sea. The focus of the paper was not to develop a new type of ANN, but rather to use it as a modelling tool and identify the most significant input variables for SWH modelling in the Adriatic Sea, among the available data. Linear and nonlinear regression models were also developed for purposes of comparison of neural network performances with those of traditional data modelling methods. A total of 22 years of data were used - 20 years of data with a 6 h sampling step time, i.e. 30684 data samples were used to calibrate the models, while 2 years of data, i.e. 2920 data samples were used to test the models’ performances. Simulation results proved the ability of an artificial neural network to model SWH with high accuracy based on available data. Furthermore, the artificial neural network model proved to be more accurate than traditional statistical models, especially when multiple input variables were used

    Complex Hydrological System Inflow Prediction using Artificial Neural Network

    Get PDF
    Artificial neural networks have been successfully used to model and predict water flows for a few decades. Different network types have proven to work better in different cases and additional tools and algorithms have been implemented to improve those neural models. However, some problems still occur in certain cases. This paper deals with the limitation of complex hydrological system inflow prediction using artificial neural network and inflow time series. This limitation is called the prediction lag and it disables the model from giving accurate predictions. To eliminate the prediction lag and to extend prediction horizon an alternative input variable named forecasted precipitation frequency is proposed in addition to antecedent inflow time-series. Simulation results prove the efficiency of the proposed solution that enables time series neural network model for 7th-day inflow prediction. This represents important information in operational planning of the hydrological system, used for short-term optimization of the system, e.g. optimization of the hydroelectric power plant operation

    Wind Disturbance Suppression in Autopilot Design

    Get PDF
    Environmental conditions affects ship’s course. Hence, it affects velocity, and efficiency of fuel consumption, which is an important research topic nowadays. Therefore, it is important to take it into account in the design of ship’s autopilots. In this paper a method is proposed to compensate for wind’s influence, which is based on wavelet transform by introducing the so called wavelet anti-filter. The anti-filter is added to the feed-forward branch of the classic autopilot design scheme, which consists of feedback loop and PID controller. The anti-filter branch represents a modification of the classic scheme

    System Identification in Difficult Operating Conditions Using Artificial Neural Networks

    Get PDF
    To investigate an ability of system identification in difficult operating conditions. A simulation based experiment was performed on a simple second order system with white noise signal superimposed to the output signal. Interferences are added to the output signal in order to simulate difficult operating conditions present in a real system environment. Based on system simulation measurements, the system was identified using conventional method with least squares estimate and an alternative method, a multi-layer perceptron (MLP) network. Graphical evaluation of simulation results showed that MLP network produced better results than conventional model, with significantly better results in case of interferences in the output signal. To model dynamic system, a simple two-layer perceptron network with external dynamic members was trained in Matlab using Levenberg-Marquardt algorithm

    Towards an improved energy efficiency of the interior permanent magnet synchronous motor drives

    Get PDF
    This paper investigates the possibility of energy efficiency increase in the drives with high speed permanent magnet synchronous motors. The losses are decreased by the proposed procedure, i.e. proper allocation of the available stator current capacity to the direct and quadrature current components. The approach provides increased energy efficiency by varying the ratio between copper and iron losses. [Projekat Ministarstva nauke Republike Srbije, br. III042004

    UnaprijeΔ‘eno upravljanje momentom visokobrzinskog pogona s asinkronim motorom bez mjerenja brzine

    Get PDF
    This paper presents improved torque control scheme for a high speed sensorless induction motor drive. The proposed high speed torque control scheme substitutes the flux oriented control by the voltage angle control in the flux weakening regime. This scheme uses maximum of available inverter voltage, alleviates well known problems of current control schemes in conditions with insufficient voltage margin and avoids the influence of estimated speed error to the achieved flux level. The algorithm uses similar slip control as flux oriented control algorithm, but is applied without an outer flux trajectory reference which is typical for the flux weakening, providing a fast and well damped torque response even if error in estimated speed is present. Experiments confirm the effectiveness of proposed torque control algorithm, smooth transition from the flux oriented control in the base speed region to the voltage angle control in the flux weakening, superior dynamic performance of the voltage angle torque control, and its robustness to an estimated rotor speed error.U radu je predstavljena unaprijeΔ‘ena shema upravljanja za pogon visokobrzinskog asinkronog motora bez mjerenja brzine. PredloΕΎeni postupak zamjenjuje vektorsko upravljanje upravljačkom strukturom s upravljanjem kutom napona u slabljenju polja. PredloΕΎena shema koristi maksimalni raspoloΕΎivi napon invertora, eliminira dobro poznate probleme strujno reguliranih pogona u uvjetima s nedovoljnom rezervom napona i eliminira utjecaj greΕ‘ke u estimaciji brzine na dostignutu razinu toka. Algoritam koristi sličnu kontrolu klizanja kao i vektorsko upravljanje, ali bez tipičnog vanjskog zadavanja toka u slabljenju polja, pruΕΎajuΔ‡i brz i dobro priguΕ‘en odziv momenta čak i u slučaju greΕ‘ke u estimaciji brzine. Eksperimenti izvedeni na velikoj brzini vrtnje potvrΔ‘uju učinkovitost predloΕΎene regulacije momenta, gladak prijelaz iz baznog područja brzine u slabljenje polja, vrhunske dinamičke performanse upravljanja kutom napona i robusnost na pogreΕ‘ku u estimiranoj brzini vrtnje
    • …
    corecore