85 research outputs found

    Capacitação em espectroscopia no infravermelho próximo, tratamento de dados, aspectos práticos e aplicações analíticas: anais...

    Get PDF
    O “2º Workshop da Rede NIR Embrapa: Capacitação em Espectroscopia no Infravermelho Próximo, Tratamento de Dados, Aspectos Práticos e Aplicações Analíticas” foi uma ação do Projeto Macroprograma 05 – Rede NIR Embrapa. O uso da espectroscopia NIR aliada à quimiometria possibilita a realização de análises químicas com precisão, rapidez, baixo custo e pouca manipulação das amostras e torna-se uma excelente opção para que a Embrapa possa validar a técnica como metodologia de rotina em seus laboratórios. O Workshop foi realizado em João Pessoa-PB, no período de 11 a 14 de setembro de 2012 e contou com a participação de 40 profissionais entre empregados da Embrapa, bolsitas e professores de Universidades. O Workshop teve como objetivo principal integrar os empregados da Embrapa que são usuários da técnica de espectroscopia no infravermelho próximo, com vistas ao aumento das parcerias institucionais, da otimização da infraestrutura e da capacitação e ampliação dos conhecimentos no uso e na aplicação dessa importante técnica analítica.bitstream/item/86909/1/doc-151.pd

    Involvement of the endocannabinoid system in reward processing in the human brain

    Get PDF
    Rationale Disturbed reward processing in humans has been associated with a number of disorders, such as depression, addiction, and attention-deficit hyperactivity disorder. The endocannabinoid (eCB) system has been implicated in reward processing in animals, but in humans, the relation between eCB functioning and reward is less clear. Objectives The current study uses functional magnetic resonance imaging (fMRI) to investigate the role of the eCB system in reward processing in humans by examining the effect of the eCB agonist Δ9-tetrahydrocannabinol (THC) on reward-related brain activity. Methods Eleven healthy males participated in a randomized placebo-controlled pharmacological fMRI study with administration of THC to challenge the eCB system. We compared anticipatory and feedback-related brain activity after placebo and THC, using a monetary incentive delay task. In this task, subjects are notified before each trial whether a correct response is rewarded (“reward trial”) or not (“neutral trial”). Results Subjects showed faster reaction times during reward trials compared to neutral trials, and this effect was not altered by THC. THC induced a widespread attenuation of the brain response to feedback in reward trials but not in neutral trials. Anticipatory brain activity was not affected. Conclusions These results suggest a role for the eCB system in the appreciation of rewards. The involvement of the eCB system in feedback processing may be relevant for disorders in which appreciation of natural rewards may be affected such as addiction

    Valence-Specific Modulation in the Accumulation of Perceptual Evidence Prior to Visual Scene Recognition

    Get PDF
    Visual scene recognition is a dynamic process through which incoming sensory information is iteratively compared with predictions regarding the most likely identity of the input stimulus. In this study, we used a novel progressive unfolding task to characterize the accumulation of perceptual evidence prior to scene recognition, and its potential modulation by the emotional valence of these scenes. Our results show that emotional (pleasant and unpleasant) scenes led to slower accumulation of evidence compared to neutral scenes. In addition, when controlling for the potential contribution of non-emotional factors (i.e., familiarity and complexity of the pictures), our results confirm a reliable shift in the accumulation of evidence for pleasant relative to neutral and unpleasant scenes, suggesting a valence-specific effect. These findings indicate that proactive iterations between sensory processing and top-down predictions during scene recognition are reliably influenced by the rapidly extracted (positive) emotional valence of the visual stimuli. We interpret these findings in accordance with the notion of a genuine positivity offset during emotional scene recognition

    Topical Insulin Accelerates Wound Healing in Diabetes by Enhancing the AKT and ERK Pathways: A Double-Blind Placebo-Controlled Clinical Trial

    Get PDF
    Background: Wound healing is impaired in diabetes mellitus, but the mechanisms involved in this process are virtually unknown. Proteins belonging to the insulin signaling pathway respond to insulin in the skin of rats. Objective: The purpose of this study was to investigate the regulation of the insulin signaling pathway in wound healing and skin repair of normal and diabetic rats, and, in parallel, the effect of a topical insulin cream on wound healing and on the activation of this pathway. Research Design and Methods: We investigated insulin signaling by immunoblotting during wound healing of control and diabetic animals with or without topical insulin. Diabetic patients with ulcers were randomized to receive topical insulin or placebo in a prospective, double-blind and placebo-controlled, randomized clinical trial (NCT 01295177) of wound healing. Results and Conclusions: Expression of IR, IRS-1, IRS-2, SHC, ERK, and AKT are increased in the tissue of healing wounds compared to intact skin, suggesting that the insulin signaling pathway may have an important role in this process. These pathways were attenuated in the wounded skin of diabetic rats, in parallel with an increase in the time of complete wound healing. Upon topical application of insulin cream, the wound healing time of diabetic animals was normalized, followed by a reversal of defective insulin signal transduction. In addition, the treatment also increased expression of other proteins, such as eNOS (also in bone marrow), VEGF, and SDF-1 alpha in wounded skin. In diabetic patients, topical insulin cream markedly improved wound healing, representing an attractive and cost-free method for treating this devastating complication of diabetes.Sao Paulo Research Foundation (FAPESP)Sao Paulo Research Foundation (FAPESP)National Institute of Science and Technology (INCT)National Institute of Science and Technology (INCT)National Council for Scientific and Technological Development (CNPq)National Council for Scientific and Technological Development (CNPq

    Self-Regulation of Amygdala Activation Using Real-Time fMRI Neurofeedback

    Get PDF
    Real-time functional magnetic resonance imaging (rtfMRI) with neurofeedback allows investigation of human brain neuroplastic changes that arise as subjects learn to modulate neurophysiological function using real-time feedback regarding their own hemodynamic responses to stimuli. We investigated the feasibility of training healthy humans to self-regulate the hemodynamic activity of the amygdala, which plays major roles in emotional processing. Participants in the experimental group were provided with ongoing information about the blood oxygen level dependent (BOLD) activity in the left amygdala (LA) and were instructed to raise the BOLD rtfMRI signal by contemplating positive autobiographical memories. A control group was assigned the same task but was instead provided with sham feedback from the left horizontal segment of the intraparietal sulcus (HIPS) region. In the LA, we found a significant BOLD signal increase due to rtfMRI neurofeedback training in the experimental group versus the control group. This effect persisted during the Transfer run without neurofeedback. For the individual subjects in the experimental group the training effect on the LA BOLD activity correlated inversely with scores on the Difficulty Identifying Feelings subscale of the Toronto Alexithymia Scale. The whole brain data analysis revealed significant differences for Happy Memories versus Rest condition between the experimental and control groups. Functional connectivity analysis of the amygdala network revealed significant widespread correlations in a fronto-temporo-limbic network. Additionally, we identified six regions — right medial frontal polar cortex, bilateral dorsomedial prefrontal cortex, left anterior cingulate cortex, and bilateral superior frontal gyrus — where the functional connectivity with the LA increased significantly across the rtfMRI neurofeedback runs and the Transfer run. The findings demonstrate that healthy subjects can learn to regulate their amygdala activation using rtfMRI neurofeedback, suggesting possible applications of rtfMRI neurofeedback training in the treatment of patients with neuropsychiatric disorders
    corecore