2,111 research outputs found

    Qualidade de vida: nutrição, higiene e segurança dos alimentos.

    Get PDF
    bitstream/item/128275/1/EMA-5-VIDA.pdfProjeto Minibibliotecas

    Performance assessment of micropollutants removal from water using advanced oxidation processes

    Get PDF
    In a global climate change scenario, reliable access to clean and safe water for all remains a great worldwide challenge for the twenty first century, as one of the most ambitious targets of several Sustainable Development Goals (SDG) established in the UN Agenda 2030. The increasing presence in the urban aquatic ecosystems of priority pollutants and contaminants of emerging concerning (CECs) have brought new challenges to the existing water treatment systems (WTS) concerning with public health protection and the of drinking water sources preservation. Advanced oxidation processes (AOPs) have been widely studied because of their potential as a complementary or alternative process to conventional wastewater treatment. Several AOPs using nanomaterials as photocatalyst can be particularly effective in the degradation of many toxic micropollutants, and enhance the multifunctionality, versatility and sustainability of WTS. This work presents a synthesis of the major results obtained in several pilot and lab-scale studies aiming to assess the performance of different low-cost catalytic processes used for antibiotic and pesticide removal. For each photo-oxidation reactors, different test scenarios are defined in order to evaluate the effects of several abiotic and hydraulic parameters on process kinetics and removal efficiencies. The experimental results were very promising, because antibiotic removal efficiencies achieved the maximum value of 96% for the photo-oxidation by water columns with suspended TiO2 nanoparticles, and 98% for the photocatalytic filtration performed by a porous medium coated with TiO2. In the photoelectrocatalytic reactor, the atrazine concentration has been fully removed for reaction times between 35 and 95 minutes.(undefined

    HEAT EXCHANGER NETWORK SYNTHESIS CONSIDERING CHANGING PHASE STREAMS

    Get PDF
    The Pinch Design Method was developed considering one-phase streams, with constant specific heats (Cp) throughout streams temperature ranges. Its first stage, the determination of utilities targets and pinch point (PP), is ruled by the number of streams, their temperatures and MCp. But, for changing phase streams, the usual description of the Cp behavior by a constant value can lead to errors in this stage and, hence, in the synthesis one. This work proposes a procedure to deal with these streams and discusses its results through an example involving multicomponent streams. First, bubble (BP) and dew (DP) points of the streams are estimated. Then, changing phase streams are split into sub-streams, using BP and DP as bounds. For each one, an effective Cp is estimated as the division of the enthalpy change by the respective temperature difference. Results obtained show significant changes on the PP, utilities targets and network proposed structure

    Comportamento Térmico da Fibra do Açaí.

    Get PDF
    bitstream/CNPDIA/10477/1/CT68_2005.pd

    Arsenic removal from drinking water by advanced filtration processes

    Get PDF
    All over the world the presence of arsenic in water sources for human consumption has been raising great concern in terms of public health since many epidemiologic studies confirm the potential carcinogenic effect of arsenic. Because arsenic removal is the most frequent option for safe drinking water, the development of more efficient and sustainable technologies is extremely important. Membrane separation processes are suitable for water treatment because they can provide an absolute barrier for bacteria and viruses, besides removing turbidity and colour. Their application is a promising technology in arsenic removal since it does not require the addition of chemical reagents nor the preliminary oxidation of arsenite required in conventional treatment options. However, since membrane technologies such as reverse osmosis can be a very expensive and unsustainable treatment option for small water supply systems, it becomes crucial that alternative methods are developed. This work presents a few conclusions based on a laboratorial study performed to evaluate the efficiency of arsenic removal using ultrafiltration, microfiltration and solar oxidation processes under different experimental conditions for relevant parameters. The results showed removal efficiencies higher than 90%
    corecore