264 research outputs found

    Autophagy in Myf5+ progenitors regulates energy and glucose homeostasis through control of brown fat and skeletal muscle development

    Get PDF
    Macroautophagy (MA) regulates cellular quality control and energy balance. For example, loss of MA in aP2-positive adipocytes converts white adipose tissue (WAT) into brown adipose tissue (BAT)-like, enhancing BAT function and thereby insulin sensitivity. However, whether MA regulates early BAT development is unknown. We report that deleting Atg7 in myogenic Myf5+ progenitors inhibits MA in Myf5-cell-derived BAT and muscle. Knock out (KO) mice have defective BAT differentiation and function. Surprisingly, their body temperature is higher due to WAT lipolysis-driven increases in fatty acid oxidation in 'Beige' cells in inguinal WAT, BAT and muscle. KO mice also present impaired muscle differentiation, reduced muscle mass and glucose intolerance. Our studies show that ATG7 in Myf5+ progenitors is required to maintain energy and glucose homeostasis through effects on BAT and muscle development. Decreased MA in myogenic progenitors with age and/or overnutrition might contribute to the metabolic defects and sarcopenia observed in these conditions

    Development of diet-induced fatty liver disease in the aging mouse is suppressed by brief daily exposure to low-magnitude mechanical signals

    Get PDF
    The age-induced decline in the body's ability to fight disease is exacerbated by obesity and metabolic disease. Using a mouse model of diet-induced obesity, the combined challenge of a high-fat diet and age on liver morphology and biochemistry was characterized, while evaluating the potential of 15 min per day of high frequency (90 Hz), extremely low-magnitude (0.2 G) mechanical signals (LMMS) to suppress lipid accumulation in the liver. Following a 36-week protocol (animals 43 weeks of age), suppression of hepatomegaly and steatosis was reflected by a 29% lower liver mass in LMMS animals as compared with controls. Average triglyceride content was 101.7 ± 19.4 μg mg−1 tissue in the livers of high-fat diet control (HFD) animals, whereas HFD + LMMS animals realized a 27% reduction to 73.8 ± 22.8 μg mg−1 tissue. In HFD + LMMS animals, liver free fatty acids were also reduced to 0.026 ± 0.009 μEq mg−1 tissue from 0.035 ± 0.005 μEq mg−1 tissue in HFD. Moderate to severe micro- and macrovesicular steatosis in HFD was contrasted to a 49% reduction in area covered by the vacuoles of at least 15 μm2 in size in HFD + LMMS animals. These data provide preliminary evidence of the ability of LMMS to attenuate the progression of fatty liver disease, most likely achieved indirectly by suppressing adipogenesis and thus the total adipose burden through life, thereby reducing a downstream challenge to liver morphology and function

    Autophagy Regulates the Liver Clock and Glucose Metabolism by Degrading CRY1

    Get PDF
    The circadian clock coordinates behavioral and circadian cues with availability and utilization of nutrients. Proteasomal degradation of clock repressors, such as cryptochrome (CRY) 1, maintains periodicity. Whether macroautophagy, a quality control pathway, degrades circadian proteins remains unknown. Here we show that circadian proteins BMAL1, CLOCK, REV-ERB alpha, and CRY1 are lysosomal targets, and that macroautophagy affects the circadian clock by selectively degrading CRY1. Autophagic degradation of CRY1, an inhibitor of gluconeogenesis, occurs in a diurnal window when rodents rely on gluconeogenesis, suggesting that CRY1 degradation is timeimprinted to maintenance of blood glucose. High-fat feeding accelerates autophagic CRY1 degradation and contributes to obesity-associated hyperglycemia. CRY1 contains several light chain 3 (LC3)-interacting region (LIR) motifs, which facilitate the interaction of cargo proteins with the autophagosome marker LC3. Using mutational analyses, we identified two distinct LIRs on CRY1 that exert circadian glycemic control by regulating CRY1 degradation, revealing LIRs as potential targets for controlling hyperglycemia.Peer reviewe

    Infarctions in the vascular territory of the posterior cerebral artery: clinical features in 232 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ischemic stroke caused by infarction in the territory of the posterior cerebral artery (PCA) has not been studied as extensively as infarctions in other vascular territories. This single centre, retrospective clinical study was conducted a) to describe salient characteristics of stroke patients with PCA infarction, b) to compare data of these patients with those with ischaemic stroke due to middle cerebral artery (MCA) and anterior cerebral artery (ACA) infarctions, and c) to identify predictors of PCA stroke.</p> <p>Findings</p> <p>A total of 232 patients with PCA stroke were included in the "Sagrat Cor Hospital of Barcelona Stroke Registry" during a period of 19 years (1986-2004). Data from stroke patients are entered in the stroke registry following a standardized protocol with 161 items regarding demographics, risk factors, clinical features, laboratory and neuroimaging data, complications and outcome. The characteristics of these 232 patients with PCA stroke were compared with those of the 1355 patients with MCA infarctions and 51 patients with ACA infarctions included in the registry.</p> <p>Infarctions of the PCA accounted for 6.8% of all cases of stroke (<it>n </it>= 3808) and 9.6% of cerebral infarctions (<it>n </it>= 2704). Lacunar infarction was the most frequent stroke subtype (34.5%) followed by atherothrombotic infarction (29.3%) and cardioembolic infarction (21.6%). In-hospital mortality was 3.9% (<it>n </it>= 9). Forty-five patients (19.4%) were symptom-free at hospital discharge. Hemianopia (odds ratio [OR] = 6.43), lacunar stroke subtype (OR = 2.18), symptom-free at discharge (OR = 1.92), limb weakness (OR = 0.10), speech disorders (OR = 0.33) and cardioembolism (OR = 0.65) were independent variables of PCA stroke in comparison with MCA infarction, whereas sensory deficit (OR = 2.36), limb weakness (OR = 0.11) and cardioembolism as stroke mechanism (OR = 0.43) were independent variables associated with PCA stroke in comparison with ACA infarction.</p> <p>Conclusions</p> <p>Lacunar stroke is the main subtype of infarction occurring in the PCA territory. Several clinical features are more frequent in stroke patients with PCA infarction than in patients with ischaemic stroke due to infarction in the MCA and ACA territories. In-hospital mortality in patients with PCA territory is low.</p

    Photoswitchable diacylglycerols enable optical control of protein kinase C.

    Get PDF
    Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling
    corecore