375 research outputs found

    How much does the UK employ, spend and invest in design?

    No full text
    Working Pape

    Management at the service of research: ReOmicS, a quality management system for omics sciences

    Get PDF
    Management and research represent a binomial almost unknown, whose potentialities and requirements have not yet been fully exploited even if, recently, the scientific and social communities have felt the burden of producing results and data requiring at the same time reproducibility, reliability, safety and efficacy of the discoveries, as well as a profitable use of resources. A Quality Management System (QMS) could represent a valid tool for these purposes, improving the quality of the research. The research community could ask whether and how it is possible to apply this approach in a research laboratory without hindering their creativity, and what the possible benefits might be. On the other hand, an international standard for a quality management system appropriate for a research laboratory is yet to come. The choice, the design and the application of a QMS, inspired by the Good Laboratory Practices, in a research laboratory specialized on “omics” sciences, is fully described in this paper. Its application has already shown good outcomes as testified by specific metric of efficiency and effectiveness. The approach is innovative as there is no obvious requirement for research laboratories to develop and define quality objectives. The paper highlights how the QMS approach enhances the relationship with public and private sectors by increasing customer confidence and loyalty, as well as improving the overall performance of the laboratory in terms of throughput and value of research. These results encourage proposing it as a QMS model providing a new and scalable operational strategy to be applied in a research environment with the same target and even in a generic research laboratory

    Laniakea : an open solution to provide Galaxy "on-demand" instances over heterogeneous cloud infrastructures

    Get PDF
    Background: While the popular workflow manager Galaxy is currently made available through several publicly accessible servers, there are scenarios where users can be better served by full administrative control over a private Galaxy instance, including, but not limited to, concerns about data privacy, customisation needs, prioritisation of particular job types, tools development, and training activities. In such cases, a cloud-based Galaxy virtual instance represents an alternative that equips the user with complete control over the Galaxy instance itself without the burden of the hardware and software infrastructure involved in running and maintaining a Galaxy server. Results: We present Laniakea, a complete software solution to set up a \u201cGalaxy on-demand\u201d platform as a service. Building on the INDIGO-DataCloud software stack, Laniakea can be deployed over common cloud architectures usually supported both by public and private e-infrastructures. The user interacts with a Laniakea-based service through a simple front-end that allows a general setup of a Galaxy instance, and then Laniakea takes care of the automatic deployment of the virtual hardware and the software components. At the end of the process, the user gains access with full administrative privileges to a private, production-grade, fully customisable, Galaxy virtual instance and to the underlying virtual machine (VM). Laniakea features deployment of single-server or cluster-backed Galaxy instances, sharing of reference data across multiple instances, data volume encryption, and support for VM image-based, Docker-based, and Ansible recipe-based Galaxy deployments. A Laniakea-based Galaxy on-demand service, named Laniakea@ReCaS, is currently hosted at the ELIXIR-IT ReCaS cloud facility. Conclusions: Laniakea offers to scientific e-infrastructures a complete and easy-to-use software solution to provide a Galaxy on-demand service to their users. Laniakea-based cloud services will help in making Galaxy more accessible to a broader user base by removing most of the burdens involved in deploying and running a Galaxy service. In turn, this will facilitate the adoption of Galaxy in scenarios where classic public instances do not represent an optimal solution. Finally, the implementation of Laniakea can be easily adapted and expanded to support different services and platforms beyond Galaxy

    Enrichment of intestinal Lactobacillus by enhanced secretory IgA coating alters glucose homeostasis in P2rx7 −/− mice

    Get PDF
    The secretory immunoglobulin A (SIgA) in mammalian gut protects the organism from infections and contributes to host physiology by shaping microbiota composition. The mechanisms regulating the adaptive SIgA response towards gut microbes are poorly defined. Deletion of P2rx7, encoding for the ATP-gated ionotropic P2X7 receptor, leads to T follicular helper (Tfh) cells expansion in the Peyer\u2019s patches (PPs) of the small intestine, enhanced germinal centre (GC) reaction and IgA secretion; the resulting alterations of the gut microbiota in turn affects host metabolism. Here, we define gut microbiota modifications that correlate with deregulated SIgA secretion and metabolic alterations in P2rx7 12/ 12 mice. In particular, Lactobacillus shows enhanced SIgA coating in P2rx7 12/ 12 with respect to wild-type (WT) mice. The abundance of SIgA-coated lactobacilli positively correlates with Tfh cells number and body weight, suggesting Lactobacillus-specific SIgA response conditions host metabolism. Accordingly, oral administration of intestinal Lactobacillus isolates from P2rx7 12/ 12 mice to WT animals results in altered glucose homeostasis and fat deposition. Thus, enhanced SIgA production by P2X7 insufficiency promotes Lactobacillus colonization that interferes with systemic metabolic homeostasis. These data indicate that P2X7 receptor-mediated regulation of commensals coating by SIgA is important in tuning the selection of bacterial taxa, which condition host metabolism

    Laniakea@ReCaS: an ELIXIR-ITALY Galaxyon-demand cloud service

    Get PDF
    Although several Galaxy public services are available, a private Galaxy instance is still mandatory or preferable for several use cases including heavy workloads, data privacy concerns or particular customization needs. Cloud computing technologies provide a viable way to deploy Galaxy private instances, freeing users from the onerous deployment and maintenance of local IT infrastructures. In the last few years, ELIXIR-IT led the development of Laniakea, a software framework that facilitates the provisioning of on-demand Galaxy instances as a cloud service over e-infrastructures. The user interacts with a Laniakea service through a web front-end that allows to configure and launch a production-grade Galaxy instance in a straightforward way. Through the interface, the user can deploy Galaxy instances over single VMs or virtual clusters, link them to shared reference data volumes and plain or encrypted volumes for storing data. A selection of \u201cflavours\u201d, that is Galaxy instances pre-configured with sets of tools for specific tasks, is also available. When the users is satisfied, Laniakea takes oved and deploys the desired Galaxy instance over the cloud, providing a public IP and full administrative privileges over the new instance. In Dec-2018, we launched the beta-test phase of the first Laniakea-based Galaxy on-demand ELIXIR-IT service: Laniakea@ReCaS. After six months of helpful testing, we are now ready to announce the production phase of this service. Access to the service will be provided on a per-project basis through an open-ended call defining terms and conditions, project proposals will be evaluated by a scientific and technical board. Accepted proposals will be granted a package of computational resources for running on-demand Galaxy instances for a duration compatible with the project requirements

    Laniakea: a Galaxy-on-demand Provider Platform Through Cloud Technologies

    Get PDF
    Galaxy is rapidly becoming the de facto standard workflow manager for bioinformatics. Although several Galaxy public services are currently available, the usage of a private Galaxy instance is still mandatory or preferable for several use cases, including heavy workloads, data privacy concerns or particular customization needs. In this context, cloud computing technologies and infrastructures can provide a powerful and scalable solution to avoid the onerous deployment and maintenance of a local hardware and software infrastructure. Laniakea is a software framework that facilitates the provisioning of on-demand Galaxy instances as a cloud service over e-infrastructures, by leveraging on the open source software catalogue developed by the INDIGO-DataCloud H2020 project, which aimed to make cloud e-infrastructures more accessible by scientific communities. End-users interact with Laniakea through a web front-end that allows a general setup of a Galaxy instance. The deployment of the virtual hardware and of the Galaxy software ecosystem is subsequently performed by the INDIGO Platform as a Service layer. At the end of the process, the user gains access to a private, production-grade, fully customizable, Galaxy virtual instance. Laniakea features the deployment of a stand-alone or cluster backed Galaxy instances, shared reference data volumes, encrypted data volumes and rapid development of novel Galaxy flavours for specific tasks. We present here the latest development iteration of Laniakea, introducing a novel and strongly configurable web interface that facilitates a more straightforward customisation of the user experience through human readable YAML syntax and a reworked encryption procedure that exploits Hashicorp Vault as encryption keys management system

    NGS-Trex : next generation sequencing transcriptome profile explorer

    Get PDF
    Background: Next-Generation Sequencing (NGS) technology has exceptionally increased the ability to sequence DNA in a massively parallel and cost-effective manner. Nevertheless, NGS data analysis requires bioinformatics skills and computational resources well beyond the possibilities of many "wet biology" laboratories. Moreover, most of projects only require few sequencing cycles and standard tools or workflows to carry out suitable analyses for the identification and annotation of genes, transcripts and splice variants found in the biological samples under investigation. These projects can take benefits from the availability of easy to use systems to automatically analyse sequences and to mine data without the preventive need of strong bioinformatics background and hardware infrastructure.Results: To address this issue we developed an automatic system targeted to the analysis of NGS data obtained from large-scale transcriptome studies. This system, we named NGS-Trex (NGS Transcriptome profile explorer) is available through a simple web interface http://www.ngs-trex.org and allows the user to upload raw sequences and easily obtain an accurate characterization of the transcriptome profile after the setting of few parameters required to tune the analysis procedure. The system is also able to assess differential expression at both gene and transcript level (i.e. splicing isoforms) by comparing the expression profile of different samples.By using simple query forms the user can obtain list of genes, transcripts, splice sites ranked and filtered according to several criteria. Data can be viewed as tables, text files or through a simple genome browser which helps the visual inspection of the data.Conclusions: NGS-Trex is a simple tool for RNA-Seq data analysis mainly targeted to "wet biology" researchers with limited bioinformatics skills. It offers simple data mining tools to explore transcriptome profiles of samples investigated taking advantage of NGS technologies. \ua9 2013 Mignone et al.; licensee BioMed Central Ltd

    Mitogenomics reveals two cryptic species in Ciona intestinalis

    Get PDF
    Individual mitochondrial genes or genomic features are commonly used as phylogenetic markers at many taxonomic levels. We used a mitogenomics approach to demonstrate the existence of two cryptic species in the ascidian Ciona intestinalis, a model chordate whose status as a single species has recently been questioned. Comprehensive comparative analysis of the mitochondrial genome of the two cryptic species revealed significant differences in gene order, size and number of noncoding regions, compositional features and divergence of protein-coding genes

    Cscan : finding common regulators of a set of genes by using a collection of genome-wide ChIP-seq datasets

    Get PDF
    The regulation of transcription of eukaryotic genes is a very complex process, which involves interactions between transcription factors (TFs) and DNA, as well as other epigenetic factors like histone modifications, DNA methylation, and so on, which nowadays can be studied and characterized with techniques like ChIP-Seq. Cscan is a web resource that includes a large collection of genome-wide ChIP-Seq experiments performed on TFs, histone modifications, RNA polymerases and others. Enriched peak regions from the ChIP-Seq experiments are crossed with the genomic coordinates of a set of input genes, to identify which of the experiments present a statistically significant number of peaks within the input genes\u2019 loci. The input can be a cluster of co-expressed genes, or any other set of genes sharing a common regulatory profile. Users can thus single out which TFs are likely to be common regulators of the genes, and their respective correlations. Also, by examining results on promoter activation, transcription, histone modifications, polymerase binding and so on, users can investigate the effect of the TFs (activation or repression of transcription) as well as of the cell or tissue specificity of the genes\u2019 regulation and expression. The web interface is free for use, and there is no login requirement. Available at: http://www.beaconlab.it/cscan
    • 

    corecore