92 research outputs found

    Intercellular communication in normal and regenerating rat liver: a quantitative analysis

    Get PDF
    We have compared intercellular communication in the regenerating and normal livers of weanling rats. The electrophysiological studies were conducted at the edge of the liver, and we have found that here as elsewhere in the liver there is a dramatic decrease in the number and size of gap junctions during regeneration. The area of hepatocyte membrane occupied by gap junctions is reduced 100-fold 29-35 h after hepatectomy. By combining observations made with the scanning electron microscope with our freeze fracture data we have estimated the number of "communicating interfaces" (areas of contact between hepatocytes that include at least one gap junction) formed by hepatocytes in normal and regenerating liver. In normal liver a hepatocyte forms gap junctions with every hepatocyte it contacts (approximately 6). In regenerating liver a hepatocyte forms detectable gap junctions with, on average, only one other hepatocyte. Intercellular spread of fluorescent dye and electric current is reduced in regenerating as compared with normal liver. The incidence of electric coupling is reduced from 100% of hepatocyte pairs tested in control liver to 92% in regenerating liver. Analysis of the spatial dependence of electronic potentials indicates a substantial increase in intercellular resistance in regenerating liver. A quantitative comparison of our morphological and physiological data is complicated by tortuous pattern of current flow and by inhomogeneities in the liver during regeneration. Nevertheless we believe that our results are consistent with the hypothesis that gap junctions are aggregates of channels between cell interiors

    Model Channel Ion Currents in NaCl - SPC/E Solution with Applied-Field Molecular Dynamics

    Get PDF
    Using periodic boundary conditions and a constant applied field, we have simulated current flow through an 8.125 Angstrom internal diameter, rigid, atomistic channel with polar walls in a rigid membrane using explicit ions and SPC/E water. Channel and bath currents were computed from ten 10-ns trajectories for each of 10 different conditions of concentration and applied voltage. An electric field was applied uniformly throughout the system to all mobile atoms. On average, the resultant net electric field falls primarily across the membrane channel, as expected for two conductive baths separated by a membrane capacitance. The channel is rarely occupied by more than one ion. Current-voltage relations are concentration-dependent and superlinear at high concentrations.Comment: Accepted for publication in Biophysical Journa

    Plasma Dynamics

    Get PDF
    Contains research objectives and reports on three research projects.National Science Foundation under Grant G-9930Air Force Cambridge Research Center under Contract AF-19(604)-5992WADC Contract AF33(616)-3984, with the Electronic Systems LaboratoryContract AF19(604)-4551 with Air Force Cambridge Research CenterAtomic Energy Commission under Contract AT(30-1)184

    Stochastic Binding of Ca2+ Ions in the Dyadic Cleft; Continuous versus Random Walk Description of Diffusion

    Get PDF
    Ca2+ signaling in the dyadic cleft in ventricular myocytes is fundamentally discrete and stochastic. We study the stochastic binding of single Ca2+ ions to receptors in the cleft using two different models of diffusion: a stochastic and discrete Random Walk (RW) model, and a deterministic continuous model. We investigate whether the latter model, together with a stochastic receptor model, can reproduce binding events registered in fully stochastic RW simulations. By evaluating the continuous model goodness-of-fit for a large range of parameters, we present evidence that it can. Further, we show that the large fluctuations in binding rate observed at the level of single time-steps are integrated and smoothed at the larger timescale of binding events, which explains the continuous model goodness-of-fit. With these results we demonstrate that the stochasticity and discreteness of the Ca2+ signaling in the dyadic cleft, determined by single binding events, can be described using a deterministic model of Ca2+ diffusion together with a stochastic model of the binding events, for a specific range of physiological relevant parameters. Time-consuming RW simulations can thus be avoided. We also present a new analytical model of bimolecular binding probabilities, which we use in the RW simulations and the statistical analysis

    Temperature dependence of proton permeation through a voltage-gated proton channel

    Get PDF
    Voltage-gated proton channels are found in many different types of cells, where they facilitate proton movement through the membrane. The mechanism of proton permeation through the channel is an issue of long-term interest, but it remains an open question. To address this issue, we examined the temperature dependence of proton permeation. Under whole cell recordings, rapid temperature changes within a few milliseconds were imposed. This method allowed for the measurement of current amplitudes immediately before and after a temperature jump, from which the ratios of these currents (Iratio) were determined. The use of Iratio for evaluating the temperature dependence minimized the contributions of factors other than permeation. Temperature jumps of various degrees (ΔT, −15 to 15°C) were applied over a wide temperature range (4–49°C), and the Q10s for the proton currents were evaluated from the Iratios. Q10 exhibited a high temperature dependence, varying from 2.2 at 10°C to 1.3 at 40°C. This implies that processes with different temperature dependencies underlie the observed Q10. A novel resistivity pulse method revealed that the access resistance with its low temperature dependence predominated in high temperature ranges. The measured temperature dependence of Q10 was decomposed into Q10 of the channel and of the access resistances. Finally, the Q10 for proton permeation through the voltage-gated proton channel itself was calculated and found to vary from 2.8 at 5°C to 2.2 at 45°C, as expected for an activation enthalpy of 64 kJ/mol. The thermodynamic features for proton permeation through proton-selective channels were discussed for the underlying mechanism

    Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study

    Get PDF
    Electrophysiological studies of the human heart face the fundamental challenge that experimental data can be acquired only from patients with underlying heart disease. Regarding human atria, there exist sizable gaps in the understanding of the functional role of cellular Ca2+ dynamics, which differ crucially from that of ventricular cells, in the modulation of excitation-contraction coupling. Accordingly, the objective of this study was to develop a mathematical model of the human atrial myocyte that, in addition to the sarcolemmal (SL) ion currents, accounts for the heterogeneity of intracellular Ca2+ dynamics emerging from a structurally detailed sarcoplasmic reticulum (SR). Based on the simulation results, our model convincingly reproduces the principal characteristics of Ca2+ dynamics: 1) the biphasic increment during the upstroke of the Ca2+ transient resulting from the delay between the peripheral and central SR Ca2+ release, and 2) the relative contribution of SL Ca2+ current and SR Ca2+ release to the Ca2+ transient. In line with experimental findings, the model also replicates the strong impact of intracellular Ca2+ dynamics on the shape of the action potential. The simulation results suggest that the peripheral SR Ca2+ release sites define the interface between Ca2+ and AP, whereas the central release sites are important for the fire-diffuse-fire propagation of Ca2+ diffusion. Furthermore, our analysis predicts that the modulation of the action potential duration due to increasing heart rate is largely mediated by changes in the intracellular Na+ concentration. Finally, the results indicate that the SR Ca2+ release is a strong modulator of AP duration and, consequently, myocyte refractoriness/excitability. We conclude that the developed model is robust and reproduces many fundamental aspects of the tight coupling between SL ion currents and intracellular Ca2+ signaling. Thus, the model provides a useful framework for future studies of excitation-contraction coupling in human atrial myocytes

    Electric potential in three-dimensional electrically syncytial tissues

    No full text

    Electric potential in cylindrical syncytia and muscle fibers

    No full text

    Coping with Mathematics Anxiety: Guidelines for College Students and Faculty

    No full text
    This 25-page paper from Fred Peskoff is a report on a study used to evaluate the relationship between college students' level of mathematics anxiety and the strategies employed to cope with it. The study found that low mathematics anxiety students tend to utilize a number of "coping strategies" more than high math anxiety students. Female students are also shown to utilize these "coping strategies" more frequently. This document may be downloaded in PDF file format
    corecore