8,511 research outputs found

    Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s Disease in the 3xTg-AD mouse model

    Get PDF
    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. In the pathogenesis of AD a pivotal role is played by two neurotoxic proteins that aggregate and accumulate in the central nervous system: amyloid beta and hyper-phosphorylated tau. Accumulation of extracellular amyloid beta plaques and intracellular hyper-phosphorylated tau tangles, and consequent neuronal loss begins 10-15 years before any cognitive impairment. In addition to cognitive and behavioral deficits, sensorial abnormalities have been described in AD patients and in some AD transgenic mouse models. Retina can be considered a simple model of the brain, as some pathological changes and therapeutic strategies from the brain may be observed or applicable to the retina. Here we propose new retinal biomarkers that could anticipate the AD diagnosis and help the beginning and the follow-up of possible future treatments. We analyzed retinal tissue of triple-transgenic AD mouse model (3xTg-AD) for the presence of pathological hallmarks during disease progression. We found the presence of amyloid beta plaques, tau tangles, neurodegeneration, and astrogliosis in the retinal ganglion cell layer of 3xTg-AD mice, already at pre-symptomatic stage. Moreover, retinal microglia in pre-symptomatic mice showed a ramified, anti-inflammatory phenotype which, during disease progression, switches to a pro-inflammatory, less ramified one, becoming neurotoxic. We hypothesize retina as a window through which monitor AD-related neurodegeneration process

    Finite element analysis applied to redesign of submerged entry nozzles for steelmaking

    Get PDF
    The production of steel by continuous casting is facilitated by the use of refractory hollow-ware components. A critical component in this process is the submerged entry nozzle (SEN). The normal operating conditions of the SEN are arduous, involving large temperature gradients and exposure to mechanical forces arising from the flow of molten steel; experimental development of the components is challenging in so hazardous an environment. The effects of the thermal stress conditions in relation to a well-tried design were therefore simulated using a finite element analysis approach. It was concluded from analyses that failures of the type being experienced are caused by the large temperature gradient within the nozzle. The analyses pointed towards a supported shoulder area of the nozzle being most vulnerable to failure and practical in-service experience confirmed this. As a direct consequence of the investigation, design modifications, incorporating changes to both the internal geometry and to the nature of the intermediate support material, were implemented, thereby substantially reducing the stresses within the Al2O3/graphite ceramic liner. Industrial trials of this modified design established that the component reliability would be significantly improved and the design has now been implemented in series production

    Using flaming as an alternative method to vine suckering.

    Get PDF
    Suckering is the process of removing the suckers that grapevine trunks put out in the spring. Suckering by hand is costly and time consuming and requires constant bending down, getting up and making repetitive motions. The mechanical removal of suckers with rotating scourges can damage the vine plants. Chemical suckering is a limiting factor for wine grape growers interested in sustainable and/or organic agriculture. The aim of this research was to test flaming as an alternative method to vine suckering. A three-year experiment was conducted on a 10-year-old Sangiovese vine (775 Paulsen rootstock). The treatments consisted of flame suckering at different phenological stages, hand-suckering and a no-suckered control. Data on the number of suckers, grape yield components, and grape composition were collected and analysed. The results showed that flaming significantly reduced the initial number of suckers. This effect on the suckers was highest when the main productive shoots of the vines were at the 18-19 BBCH growth stage. Flame-suckering did not affect grape yield components and grape composition. Future studies could investigate the simultaneous use of flaming for both suckering and weed control

    The influence of non-living mulch, mechanical and thermal treatments on weed population and yield of rainfed fresh-market tomato (Solanum lycopersicum L.)

    Get PDF
    Weed control is often a major limitation for vegetable crops, since compared to arable crops fewer herbicides are available and the crops are more sensitive to weeds. Field experiments were carried out in the province of Pisa (Central Italy) to determine the effect of two different mulches (black biodegradable plastic film and wheat straw) and mechanical and thermal treatments on weed population and yield of rain-fed fresh market tomato (Solanum lycopersicum L.). Rolling harrow, flaming machine and precision hoe for weed control, which were either built, enhanced or modified by the University of Pisa were used separately (mechanical-thermal strategy) or in combination with a straw mulch (mechanical-thermal-straw strategy). These two innovative strategies were compared with the traditional farming system, which uses a biodegradable plastic mulch film. The strategies were compared in terms of machine performance, weed density, total labour requirement, weed dry biomass, and crop fresh yield at harvest. The total operative time for weed control was on average ~25 h ha-1 for the two systems, which included mulching, and over 30 h ha-1 for the mechanical-thermal strategy. The three strategies controlled weeds effectively, with only 30 g m-2 in each treatment. Tomato yield, however, was 35% higher for strategies that included mulching (both biodegradable film and straw)

    The use of different hot foam doses for weed control

    Get PDF
    Thermal weed control technology plays an important role in managing weeds in synthetic herbicide-free systems, particularly in organic agriculture. The use of hot foam represents an evolution of the hot water weed control thermal method, modified by the addition of biodegradable foaming agents. The aim of this study was to test the weeding eect of dierent five hot foam doses, in two sites of dierent weed composition fields [i.e., Festuca arundinacea (Schreb.), Taraxacum ocinale (Weber) and Plantago lanceolata (L.)], by evaluating the devitalisation of weeds, their regrowth, the weed dry biomass at the end of the experiment and the temperature of hot foam as aected by dierent foam doses. The results showed that the eect of the hot foam doses diered with the dierent infested weed species experiments. In the Festuca arundinacea (Schreb.) infested field, all doses from 3.33 L m2 to 8.33 L m2 led to a 100% weed cover devitalisation and a lower weed dry biomass compared to the dose of 1.67 L m2, whereas the weed regrowth was similar when all doses were applied. In the Taraxacum ocinale (Weber) and Plantago lanceolata (L.) infested fields, doses from 5.00 L m2 to 8.33 L m2 in site I and from 3.33 L m2 to 8.33 L m2 in site II led to 100% of weed cover devitalisation. The highest doses of 6.67 L m2 and 8.33 L m2 led to a slower weed regrowth and a lower weed dry biomass compared to the other doses. The time needed for weeds to again cover 50%, after the 100% devitalisation, was, on average, one month when all doses were applied in the Festuca arundinacea (Schreb.) infested field, whereas in the Taraxacum ocinale (Weber) and Plantago lanceolata (L.) fields, this delay was estimated only when doses of 6.67 L m2 and 8.33 L m2 were used in site I and a dose of 8.33 L m2 in site II. Thus, in the Festuca arundinacea (Schreb.) field experiments hot foam doses from 3.33 L m2 to 8.33 L m2 were eective in controlling weeds, and the use of the lowest dose (i.e., 3.33 L m2) is recommended. However, for Taraxacum ocinale (Weber) and Plantago lanceolata (L.) the highest doses are recommended (i.e., 6.67 L m2 and 8.33 L m2), as these led to 100% weed devitalisation, slower regrowth, and lower weed dry biomass than other doses. A delay in the regrowth of weeds by 30 days can lead to the hypothesis that the future application of hot foam as a desiccant in no-till field bands, before the transplant of high-income vegetable crops, will provide a competitive advantage against weeds

    Flaming, glyphosate, hot foam and nonanoic acid for weed control: a comparison.

    Get PDF
    Synthetic herbicides are commonly used in weed management, however, 70 years of use has led to weed resistance and environmental concerns. These problems have led scientists to consider alternative methods of weed management in order to reduce the inputs and impacts of synthetic herbicides. The aim of this experiment was to test the level of weed control using four weeding methods: glyphosate applied at an ultra-low volume, the organic herbicide nonanoic acid, flaming, and hot foam. The results showed that weed control was eective only when flaming and hot foam were applied (99% and 100% weed control, respectively). Nonanoic acid at a dose of 11 kg a.i. ha1 diluted in 400 L of water did not control developed plants of Cyperus esculentus (L.), Convolvulus arvensis (L.) and Poa annua (L.). Glyphosate at a dose of 1080 g a.i. ha1 (pure product) only controlled P. annua (L.), but had no eect on C. esculentus (L.) and C. arvensis (L.). After the aboveground tissues of weeds had died, regrowth began earlier after flaming compared to hot foam. There was no regrowth of P. annua (L.) only after using hot foam and glyphosate. Hot foam was generally better at damaging the meristems of the weeds. In one of the two experiment sites, significantly more time was needed after the hot foam to recover 10% and 50% of the ground compared to flaming. The time needed to recover 90% of the ground was on average 26–27 days for flaming and hot foam, which is the time that is assumed to be required before repeating the application. A total of 29 days after the treatments, weeds were smaller after flaming, glyphosate and hot foam compared to nonanoic acid and the control, where they had more time to grow

    Hot foam and hot water for weed control: a comparison

    Get PDF
    Thermal weed control plays an important role in managing weeds in synthetic herbicide-free systems, particularly in organic agriculture and in urban areas where synthetic herbicides are prohibited. This study compares the impact on weed control of increased doses of hot water and hot foam (i.e. 0, 0.67, 1.67, 3.33, 5.00, 6.67 and 8.33 kg m–2). The doses were applied using the same machine. The temperatures, weed control effectiveness, weed regrowth after the death of the aboveground vegetative weed tissues, and weed dry biomass 30 days after the treatments were studied in two experimental fields with a different weed composition (i.e. Site I and Site II). The results showed that difficult weeds to control, such as Cynodon dactylon (L.) Pers., Digitaria sanguinalis (L.) Scop. and Taraxacum officinale Weber, like all the other species in the initial weed populations in the two experiments, died after lower doses of hot foam compared to hot water. Adding foam to hot water made it possible to lower the required dose of water by at least 2.5-fold compared to hot water used alone. By insulating the weeds, the foam led to higher peak temperatures and slower temperature decay, thus determining an effective weed control with lower doses compared to hot water. Starting from 11 days and 16 days after treatments (for Site I and Site II, respectively), there were no statistically significant differences in weed regrowth between hot foam and hot water at all the doses applied. There were no differences between the dry biomass of weeds collected 30 days after treatments when the same doses of hot foam and hot water were used

    Measurements and scaling of buoyancy-induced flows in ventilated tunnels

    Get PDF
    We investigate the ventilation conditions required to control the propagation of smoke, produced by a tunnel fire, in the presence of two inertial forcings: a transverse extraction system and a longitudinal flow. For that purpose, we performed a series of experiments in a reduced-scale tunnel, using a mixture of air and helium to simulate the release of hot smoke during a fire. Experiments were designed to focus on the ventilation flows that allow the buoyant release to be confined between two adjacent extraction vents. Different source conditions, in terms of density and velocity of the buoyant release, were analysed along with different vent configurations. Experiments allowed us to quantify the increase of the extraction velocity needed to confine the buoyant smoke, overcoming the effect of an imposed longitudinal velocity. Vents with a rectangular shape, and spanning over the whole tunnel width, provide the best performance. Finally, we studied the stratification conditions of the flow, individuating four regimes. Interestingly, when the stratification conditions fade out, as both the longitudinal flow and vertical extraction flows increase, the flow dynamics becomes almost independent of the forcing induced by the presence of buoyant smoke, which eventually acts as a passive scalar transported by the flow
    • …
    corecore