10 research outputs found

    Structural–Functional Relationship of the Ribonucleolytic Activity of aIF5A from Sulfolobus solfataricus

    Get PDF
    The translation factor IF5A is a highly conserved protein playing a well-recognized and well-characterized role in protein synthesis; nevertheless, some of its features as well as its abundance in the cell suggest that it may perform additional functions related to RNA metabolism. Here, we have undertaken a structural and functional characterization of aIF5A from the crenarchaeal Sulfolobus solfataricus model organism. We confirm the association of aIF5A with several RNA molecules in vivo and demonstrate that the protein is endowed with a ribonuclease activity which is specific for long and structured RNA. By means of biochemical and structural approaches we show that aIF5A can exist in both monomeric and dimeric conformations and the monomer formation is favored by the association with RNA. Finally, modelling of the three-dimensional structure of S. solfataricus aIF5A shows an extended positively charged surface which may explain its strong tendency to associate to RNA in vivo

    Language Study in Irwan Prayitno's Pantun (Governor of Sumatera Barat)

    Full text link
    The purpose of this study is to look at the language (diction) used and pantun in pantun in the speech of Irwan Prayitno (Governor of Sumatera Barat). The data of this study are words in the poem with the source of spontaneous pantun data collection ala Irwan Prayitno. This research describes pantun (identification and classification) based on word types. Based on the research objectives, the findings of this study are as follows. First the language study, the choice of words that are often found are the name of a person, the name of a place or region, and the name of a profession or nickname. The two pantun structures, the poetry found in general, ab.ab., then aa.aa, ab.aa, and ab.bb. By analyzing and linking the diction used, the findings of this study say the rhymes in Irwan Prayitno's speech (Governor of Sumatera Barat) have specific spontaneity as evidenced by the diction used that is relevant to the situation or condition of the speech event that took place

    Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste

    No full text
    This research compares the operation of one-stage and two-stage anaerobic continuously stirred tank reactor (CSTR) systems fed semi-continuously with food waste. The main purpose was to investigate the effects of ammoniacal nitrogen on the anaerobic digestion process. The two-stage system gave more reliable operation compared to one-stage due to: (i) a better pH self-adjusting capacity; (ii) a higher resistance to organic loading shocks; and (iii) a higher conversion rate of organic substrate to biomethane. Also a small amount of biohydrogen was detected from the first stage of the two-stage reactor making this system attractive for biohythane production. As the digestate contains ammoniacal nitrogen, re-circulating it provided the necessary alkalinity in the systems, thus preventing an eventual failure by volatile fatty acids (VFA) accumulation. However, re-circulation also resulted in an ammonium accumulation, yielding a lower biomethane production. Based on the batch experimental results the 50% inhibitory concentration of total ammoniacal nitrogen on the methanogenic activities was calculated as 3.8. g/L, corresponding to 146. mg/L free ammonia for the inoculum used for this research. The two-stage system was affected by the inhibition more than the one-stage system, as it requires less alkalinity and the physically separated methanogens are more sensitive to inhibitory factors, such as ammonium and propionic acid

    Selection-driven adaptation to the extreme Antarctic environment in the Emperor penguin

    No full text
    The eco-evolutionary history of penguins is characterised by shifting from temperate to cold environments. Breeding in Antarctica, the Emperor penguin appears as an extreme outcome of this process, with unique features related to insulation, heat production and energy management. However, whether this species actually diverged from a less cold-adapted ancestor, more ecologically similar to its sister species, the King penguin, is still an open question. As the Antarctic colonisation likely resulted in vast changes in selective pressure experienced by the Emperor penguin, the relative quantification of the genomic signatures of selection, unique to each sister species, could answer this question. Applying phylogeny-based selection tests on 7651 orthologous genes, we identified a more pervasive selection shift in the Emperor penguin than in the King penguin, supporting the hypothesis that its extreme cold adaptation is a derived state. Furthermore, among candidate genes under selection, four (TRPM8, LEPR, CRB1, and SFI1) were identified before in other cold-adapted homeotherms, like the woolly Mammoth, while other 161 genes can be assigned to biological functions relevant to cold adaptation identified in previous studies. Location and structural effects of TRPM8 substitutions in Emperor and King penguin lineages support their functional role with putative divergent effects on thermal adaptation. We conclude that extreme cold adaptation in the Emperor penguin largely involved unique genetic options which, however, affect metabolic and physiological traits common to other cold-adapted homeotherms

    Selection-driven adaptation to the extreme Antarctic environment in the Emperor penguin

    Get PDF
    The eco-evolutionary history of penguins is characterised by shifting from temperate to cold environments. Breeding in Antarctica, the Emperor penguin appears as an extreme outcome of this process, with unique features related to insulation, heat production and energy management. However, whether this species actually diverged from a less cold-adapted ancestor, more ecologically similar to its sister species, the King penguin, is still an open question. As the Antarctic colonisation likely resulted in vast changes in selective pressure experienced by the Emperor penguin, the relative quantification of the genomic signatures of selection, unique to each sister species, could answer this question. Applying phylogeny-based selection tests on 7651 orthologous genes, we identified a more pervasive selection shift in the Emperor penguin than in the King penguin, supporting the hypothesis that its extreme cold adaptation is a derived state. Furthermore, among candidate genes under selection, four (TRPM8, LEPR, CRB1, and SFI1) were identified before in other cold-adapted homeotherms, like the woolly Mammoth, while other 161 genes can be assigned to biological functions relevant to cold adaptation identified in previous studies. Location and structural effects of TRPM8 substitutions in Emperor and King penguin lineages support their functional role with putative divergent effects on thermal adaptation. We conclude that extreme cold adaptation in the Emperor penguin largely involved unique genetic options which, however, affect metabolic and physiological traits common to other cold-adapted homeotherms

    SARS-CoV-2 multi-variant rapid detector based on graphene transistor functionalized with an engineered dimeric ACE2 receptor

    No full text
    Reliable point-of-care (POC) rapid tests are crucial to detect infection and contain the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The emergence of several variants of concern (VOC) can reduce binding affinity to diagnostic antibodies, limiting the efficacy of the currently adopted tests, while showing unaltered or increased affinity for the host receptor, angiotensin converting enzyme 2 (ACE2). We present a graphene field-effect transistor (gFET) biosensor design, which exploits the Spike-ACE2 interaction, the crucial step for SARS-CoV-2 infection. Extensive computational analyses show that a chimeric ACE2-Fragment crystallizable (ACE2-Fc) construct mimics the native receptor dimeric conformation. ACE2-Fc functionalized gFET allows in vitro detection of the trimeric Spike protein, outperforming functionalization with a diagnostic antibody or with the soluble ACE2 portion, resulting in a sensitivity of 20 pg/mL. Our miniaturized POC biosensor successfully detects B.1.610 (pre-VOC), Alpha, Beta, Gamma, Delta, Omicron (i.e., BA.1, BA.2, BA.4, BA.5, BA.2.75 and BQ.1) variants in isolated viruses and patient's clinical nasopharyngeal swabs. The biosensor reached a Limit Of Detection (LOD) of 65 cps/mL in swab specimens of Omicron BA.5. Our approach paves the way for a new and reusable class of highly sensitive, rapid and variant-robust SARS-CoV-2 detection systems
    corecore