6,254 research outputs found

    Tracing the atomic nitrogen abundance in star-forming regions with ammonia deuteration

    Get PDF
    Partitioning of elemental nitrogen in star-forming regions is not well constrained. Most nitrogen is expected to be partitioned among atomic nitrogen, molecular nitrogen (N2), and icy N-bearing molecules, such as ammonia (NH3) and N2. Atomic nitrogen is not directly observable in the cold gas. In this paper, we propose an indirect way to constrain the amount of atomic nitrogen in the cold gas of star-forming clouds, via deuteration in ammonia ice, the [ND2H/NH2D]/[NH2D/NH3] ratio. Using gas-ice astrochemical simulations, we show that if atomic nitrogen remains as the primary reservoir of nitrogen during cold ice formation stages, the [ND2H/NH2D]/[NH2D/NH3] ratio is close to the statistical value of 1/3 and lower than unity, whereas if atomic nitrogen is largely converted into N-bearing molecules, the ratio should be larger than unity. Observability of ammonia isotopologues in the inner hot regions around low-mass protostars, where ammonia ice has sublimated, is also discussed. We conclude that the [ND2H/NH2D]/[NH2D/NH3] ratio can be quantified using a combination of VLA and ALMA observations with reasonable integration times, at least toward IRAS 16293-2422 where high molecular column densities are expected.Comment: Accepted for publication in MNRAS, 12 pages, 9 figures, 1 Tabl

    Dynamic effects of mandatory activation of welfare participants

    Get PDF
    Previous literature shows that activation requirements for welfare participants decrease welfare participation. However, the dynamics have not been examined, and often only exit effects are analyzed. In this paper, we look more closely at the transition rates into and out of welfare. Using register data on the entire population of Stockholm, we are able to capture how both entry and exit rates were affected when activation require-ments were introduced at different times in Stockholm’s city districts. The results indi-cate that the main reduction in welfare participation is due to a small increase in exit rates. The part of the population that is at risk of entering into welfare, though, expe-riences a reduction in entry rates due to the reform. There are also heterogeneous ef¬fects, namely, large effects on entry rates for young individuals. In addition, there are larger effects on exit rates for unmarried individuals without children compared to the population as a whole.Welfare reform; mandatory activation program; welfare entry; welfare exit

    Noble gas as a functional dopant in ZnO

    Full text link
    Owing to fully occupied orbitals, noble gases are considered to be chemically inert and to have limited effect on materials properties under standard conditions. However, using first-principles calculations, we demonstrate herein that the insertion of noble gas (i.e., He, Ne, or Ar) in ZnO results in local destabilization of electron density of the material driven by minimization of an unfavorable overlap of atomic orbitals of the noble gas and its surrounding atoms. Specifically, the noble gas defect (interstitial or substitutional) in ZnO pushes the electron density of its surrounding atoms away from the defect. Simultaneously, the host material confines the electron density of the noble gas. As a consequence, the interaction of He, Ne, or Ar with O vacancies of ZnO in different charge states q (ZnO:VOq) affects the vacancy stability and their electronic structures. Remarkably, we find that the noble gas is a functional dopant that can delocalize the deep in-gap VOq states and lift electrons associated with the vacancy to the conduction band.Comment: 15 pages, 4 figure

    Scrum2Kanban: Integrating Kanban and Scrum in a University Software Engineering Capstone Course

    Full text link
    Using university capstone courses to teach agile software development methodologies has become commonplace, as agile methods have gained support in professional software development. This usually means students are introduced to and work with the currently most popular agile methodology: Scrum. However, as the agile methods employed in the industry change and are adapted to different contexts, university courses must follow suit. A prime example of this is the Kanban method, which has recently gathered attention in the industry. In this paper, we describe a capstone course design, which adds the hands-on learning of the lean principles advocated by Kanban into a capstone project run with Scrum. This both ensures that students are aware of recent process frameworks and ideas as well as gain a more thorough overview of how agile methods can be employed in practice. We describe the details of the course and analyze the participating students' perceptions as well as our observations. We analyze the development artifacts, created by students during the course in respect to the two different development methodologies. We further present a summary of the lessons learned as well as recommendations for future similar courses. The survey conducted at the end of the course revealed an overwhelmingly positive attitude of students towards the integration of Kanban into the course

    Warm water deuterium fractionation in IRAS 16293-2422 - The high-resolution ALMA and SMA view

    Get PDF
    Measuring the water deuterium fractionation in the inner warm regions of low-mass protostars has so far been hampered by poor angular resolution obtainable with single-dish ground- and space-based telescopes. Observations of water isotopologues using (sub)millimeter wavelength interferometers have the potential to shed light on this matter. Observations toward IRAS 16293-2422 of the 5(3,2)-4(4,1) transition of H2-18O at 692.07914 GHz from Atacama Large Millimeter/submillimeter Array (ALMA) as well as the 3(1,3)-2(2,0) of H2-18O at 203.40752 GHz and the 3(1,2)-2(2,1) transition of HDO at 225.89672 GHz from the Submillimeter Array (SMA) are presented. The 692 GHz H2-18O line is seen toward both components of the binary protostar. Toward one of the components, "source B", the line is seen in absorption toward the continuum, slightly red-shifted from the systemic velocity, whereas emission is seen off-source at the systemic velocity. Toward the other component, "source A", the two HDO and H2-18O lines are detected as well with the SMA. From the H2-18O transitions the excitation temperature is estimated at 124 +/- 12 K. The calculated HDO/H2O ratio is (9.2 +/- 2.6)*10^(-4) - significantly lower than previous estimates in the warm gas close to the source. It is also lower by a factor of ~5 than the ratio deduced in the outer envelope. Our observations reveal the physical and chemical structure of water vapor close to the protostars on solar-system scales. The red-shifted absorption detected toward source B is indicative of infall. The excitation temperature is consistent with the picture of water ice evaporation close to the protostar. The low HDO/H2O ratio deduced here suggests that the differences between the inner regions of the protostars and the Earth's oceans and comets are smaller than previously thought.Comment: Accepted for publication in Astronomy & Astrophysic

    Velocity dependence of friction of confined polymers

    Get PDF
    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate, and (b) polymer sliding on polymer. We discuss the velocity dependence of the frictional shear stress for both cases. In our simulations, the polymer films are very thin (approx. 3 nm), and the solid walls are connected to a thermostat at a short distance from the polymer slab. Under these circumstances we find that frictional heating effects are not important, and the effective temperature in the polymer film is always close to the thermostat temperature. In the first setup (a), for hydrocarbons with molecular lengths from 60 to 1400 carbon atoms, the shear stresses are nearly independent of molecular length, but for the shortest hydrocarbon C20H42 the frictional shear stress is lower. In all cases the frictional shear stress increases monotonically with the sliding velocity. For polymer sliding on polymer [case (b)] the friction is much larger, and the velocity dependence is more complex. For hydrocarbons with molecular lengths from 60 to 140 C-atoms, the number of monolayers of lubricant increases (abruptly) with increasing sliding velocity (from 6 to 7 layers), leading to a decrease of the friction. Before and after the layering transition, the frictional shear stresses are nearly proportional to the logarithm of sliding velocity. For the longest hydrocarbon (1400 C-atoms) the friction shows no dependence on the sliding velocity, and for the shortest hydrocarbon (20 C-atoms) the frictional shear stress increases nearly linearly with the sliding velocity.Comment: 10 pages, 14 figure

    The deuterium fractionation of water on solar-system scales in deeply-embedded low-mass protostars

    Get PDF
    (Abridged) The water deuterium fractionation (HDO/H2_2O abundance ratio) has traditionally been used to infer the amount of water brought to Earth by comets. Measuring this ratio in deeply-embedded low-mass protostars makes it possible to probe the critical stage when water is transported from clouds to disks in which icy bodies are formed. We present sub-arcsecond resolution observations of HDO in combination with H218_2^{18}O from the PdBI toward the three low-mass protostars NGC 1333-IRAS 2A, IRAS 4A-NW, and IRAS 4B. The resulting HDO/H2_2O ratio is 7.4±2.1×10−47.4\pm2.1\times10^{-4} for IRAS 2A, 19.1±5.4×10−419.1\pm5.4\times10^{-4} for IRAS 4A-NW, and 5.9±1.7×10−45.9\pm1.7\times10^{-4} for IRAS 4B. Derived ratios agree with radiative transfer models within a factor of 2-4 depending on the source. Our HDO/H2_2O ratios for the inner regions (where T>100T>100 K) of four young protostars are only a factor of 2 higher than those found for pristine, solar system comets. These small differences suggest that little processing of water occurs between the deeply embedded stage and the formation of planetesimals and comets.Comment: 10 pages, 6 figures, accepted for publication in Astronomy and Astrophysic
    • 

    corecore