8 research outputs found

    Towards a Mechanistic Model of Solid-Electrolyte Interphase Formation and Evolution in Lithium-ion Batteries

    No full text
    The formation of passivation films by interfacial reactions, though critical for applications ranging from advanced alloys to electrochemical energy storage, is often poorly understood. In this work, we explore the formation of an exemplar passivation film, the solid-electrolyte interphase (SEI), which is responsible for stabilizing lithium-ion batteries. Using stochastic simulations based on quantum chemical calculations and data-driven chemical reaction networks, we directly model competition between SEI products at a mechanistic level for the first time. Our results recover the Peled-like separation of the SEI into inorganic and organic domains resulting from rich reactive competition without fitting parameters to experimental inputs. By conducting accelerated simulations at elevated temperature, we track SEI evolution, confirming the postulated reduction of lithium ethylene monocarbonate to dilithium ethylene monocarbonate and H2. These findings furnish fundamental insights into the dynamics of SEI formation and illustrate a path forward towards a predictive understanding of electrochemical passivation

    Quantum chemical calculations of lithium-ion battery electrolyte and interphase species.

    No full text
    Lithium-ion batteries (LIBs) represent the state of the art in high-density energy storage. To further advance LIB technology, a fundamental understanding of the underlying chemical processes is required. In particular, the decomposition of electrolyte species and associated formation of the solid electrolyte interphase (SEI) is critical for LIB performance. However, SEI formation is poorly understood, in part due to insufficient exploration of the vast reactive space. The Lithium-Ion Battery Electrolyte (LIBE) dataset reported here aims to provide accurate first-principles data to improve the understanding of SEI species and associated reactions. The dataset was generated by fragmenting a set of principal molecules, including solvents, salts, and SEI products, and then selectively recombining a subset of the fragments. All candidate molecules were analyzed at the ωB97X-V/def2-TZVPPD/SMD level of theory at various charges and spin multiplicities. In total, LIBE contains structural, thermodynamic, and vibrational information on over 17,000 unique species. In addition to studies of reactivity in LIBs, this dataset may prove useful for machine learning of molecular and reaction properties
    corecore