390 research outputs found

    ON THE COMPUTATIONAL HARDNESS OF THE CODE EQUIVALENCE PROBLEM IN CRYPTOGRAPHY

    Get PDF
    Code equivalence is a well-known concept in coding theory. Re-cently, literature saw an increased interest in this notion, due to the intro-duction of protocols based on the hardness of finding the equivalence between two linear codes. In this paper, we analyze the security of code equivalence, with a special focus on the hardest instances, in the interest of cryptographic usage. Our work stems from a thorough review of existing literature, identifies the various types of solvers for the problem, and provides a precise complexity analysis, where previously absent. Furthermore, we are able to improve on the state of the art, providing more efficient algorithm variations, for which we include numerical simulation data. In the end, the goal of this paper is to provide a complete, single point of access, which can be used as a tool for designing schemes that rely on the code equivalence problem

    An Air-well sparging minifermenter system for high-throughput protein production.

    Get PDF
    BackgroundOver the last few years High-Throughput Protein Production (HTPP) has played a crucial role for functional proteomics. High-quality, high yield and fast recombinant protein production are critical for new HTPP technologies. Escherichia coli is usually the expression system of choice in protein production thanks to its fast growth, ease of handling and high yields of protein produced. Even though shake-flask cultures are widely used, there is an increasing need for easy to handle, lab scale, high throughput systems.ResultsIn this article we described a novel minifermenter system suitable for HTPP. The Air-Well minifermenter system is made by a homogeneous air sparging device that includes an air diffusion system, and a stainless steel 96 needle plate integrated with a 96 deep well plate where cultures take place. This system provides aeration to achieve higher optical density growth compared to classical shaking growth without the decrease in pH value and bacterial viability. Moreover the yield of recombinant protein is up to 3-fold higher with a considerable improvement in the amount of full length proteins.ConclusionsHigh throughput production of hundreds of proteins in parallel can be obtained sparging air in a continuous and controlled manner. The system used is modular and can be easily modified and scaled up to meet the demands for HTPP

    How to assess appearance distress and motivation in plastic surgery candidates: Italian validation of Derriford Appearance Scale 59 (DAS 59)

    Get PDF
    The Derriford Appearance Scale (DAS) 59 was specifically designed to measure psychosocial adjustment in patients with appearance problems. Previous studies using the DAS59 have proven it to be a reliable method of assessing the appearance-related quality of life after plastic surgery procedures. The aim of this study was to develop a valid and reliable Italian version of the DAS59

    Characterization of Contractile Forces Generated by Stretch Marks Fibroblasts: In Vitro Study

    Get PDF
    Abstract: Authors present a study about the contraction forces observed in striae distensae fibroblasts (SMF) in a collagen scaffold. Collagen lattices were used to study the mechanical behavior of SDF within the collagen matrix compared to the lattices produced using the healthy skin derived fibroblasts (NSF). A Forcebox device was used to measure the contractile forces. Striae Rubrae fibroblast’s contractile force was by 28% greater than that generated by the NSF and striae albae fibroblasts (P<0.05). Anomalies and especially differences in forces generated by SMF were observed through all our experiments. These findings complete and corroborate the results and information published in our previous studies. Level of Evidence V: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266

    Tuning the doping of epitaxial graphene on a conventional semiconductor via substrate surface reconstruction

    Get PDF
    Combining scanning tunneling microscopy and angle-resolved photoemission spectroscopy, we demonstrate how to tune the doping of epitaxial graphene from p to n by exploiting the structural changes that occur spontaneously on the Ge surface upon thermal annealing. Furthermore, using first-principle calculations, we build a model that successfully reproduces the experimental observations. Since the ability to modify graphene electronic properties is of fundamental importance when it comes to applications, our results provide an important contribution toward the integration of graphene with conventional semiconductors

    Striae Distensae: In Vitro Study and Assessment of Combined Treatment With Sodium Ascorbate and Platelet-Rich Plasma on Fibroblasts

    Get PDF
    Introduction: Striae distensae (SD) appear clinically as parallel striae, lying perpendicular to the tension lines of the skin. SD evolve into two clinical phases, an initial inflammatory phase in which they are called “striae rubrae” (SR) and a chronic phase in which they are called striae albae (SA). Fibroblasts seem to play a key role in the pathogenesis of stretch marks. This study was aimed at describing and analyzing stretch marks-derived fibroblasts (SMF), the differences between SR- and SA-derived fibroblasts (SRF, SAF), testing two treatments in vitro (sodium ascorbate and PrP) on SAF. Material and Methods: To characterize the SMF, the expression of alpha smooth muscle actin (alpha SMA) was investigated. Type I collagen expression was measured in SAF, before and after adding different PrP concentrations and sodium ascorbate in the culture medium. Results were processed through statistical analysis models using the Student’s t-test. Results: A significant increase in alpha SMA (P <0.001) was observed in SRF. SAF treated with PrP and sodium ascorbate showed a resumption of their metabolic activity by an increase in collagen type I production and cell proliferation. After 24 h of incubation with PrP 1% and PrP 5% + sodium ascorbate, cell viability was increased by 140% and 151% and by 156 and 178% after 48 h, respectively, compared to the control. Conclusion: Our study shows that a biologically mediated improvement in SMF metabolic activity is possible. Our promising results require further trials to be able to confirm the reproducibility of this combined treatment, particularly in vivo. No Level Assigned: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable

    Wettability of soft PLGA surfaces predicted by experimentally augmented atomistic models

    Get PDF
    A challenging topic in surface engineering is predicting the wetting properties of soft interfaces with different liquids. However, a robust computational protocol suitable for predicting wettability with molecular precision is still lacking. In this article, we propose a workflow based on molecular dynamics simulations to predict the wettability of polymer surfaces and test it against the experimental contact angle of several polar and nonpolar liquids, namely water, formamide, toluene, and hexane. The specific case study addressed here focuses on a poly(lactic-co-glycolic acid) (PLGA) flat surface, but the proposed experimental-modeling protocol may have broader fields of application. The structural properties of PLGA slabs have been modeled on the surface roughness determined with microscopy measurements, while the computed surface tensions and contact angles were validated against standardized characterization tests, reaching a discrepancy of less than 3% in the case of water. Overall, this work represents the initial step toward an integrated multiscale framework for predicting the wettability of more complex soft interfaces, which will eventually take into account the effect of surface topology at higher scales and synergically be employed with experimental characterization techniques

    SINEUP non-coding RNA activity depends on specific N6-methyladenosine nucleotides

    Get PDF
    SINEUPs are natural and synthetic antisense long non-coding RNAs (lncRNAs) selectively enhancing target mRNAs translation by increasing their association with polysomes. This activity requires two RNA domains: an embedded inverted SINEB2 element acting as effector domain, and an antisense region, the binding domain, conferring target selectivity. SINEUP technology presents several advantages to treat genetic (haploinsufficiencies) and complex diseases restoring the physiological activity of diseased genes and of compensatory pathways. To streamline these applications to the clinic, a better understanding of the mechanism of action is needed. Here we show that natural mouse SINEUP AS Uchl1 and synthetic human miniSINEUP-DJ-1 are N6-methyladenosine (m6A) modified by METTL3 enzyme. Then, we map m6A-modified sites along SINEUP sequence with Nanopore direct RNA sequencing and a reverse transcription assay. We report that m6A removal from SINEUP RNA causes the depletion of endogenous target mRNA from actively translating polysomes, without altering SINEUP enrichment in ribosomal subunit-associated fractions. These results prove that SINEUP activity requires an m6A-dependent step to enhance translation of target mRNAs, providing a new mechanism for m6A translation regulation and strengthening our knowledge of SINEUP-specific mode of action. Altogether these new findings pave the way to a more effective therapeutic application of this well-defined class of lncRNAs

    SINEUPs: A novel toolbox for RNA therapeutics

    Get PDF
    RNA molecules have emerged as a new class of promising therapeutics to expand the range of druggable targets in the genome. In addition to 'canonical' protein-coding mRNAs, the emerging richness of sense and antisense long non-coding RNAs (lncRNAs) provides a new reservoir of molecular tools for RNA-based drugs. LncRNAs are composed of modular structural domains with specific activities involving the recruitment of protein cofactors or directly interacting with nucleic acids. A single therapeutic RNA transcript can then be assembled combining domains with defined secondary structures and functions, and antisense sequences specific for the RNA/DNA target of interest. As the first representative molecules of this new pharmacology, we have identified SINEUPs, a new functional class of natural antisense lncRNAs that increase the translation of partially overlapping mRNAs. Their activity is based on the combination of two domains: An embedded mouse inverted SINEB2 element that enhances mRNA translation (effector domain) and an overlapping antisense region that provides specificity for the target sense transcript (binding domain). By genetic engineering, synthetic SINEUPs can potentially target any mRNA of interest increasing translation and therefore the endogenous level of the encoded protein. In this review, we describe the state-of-the-art knowledge of SINEUPs and discuss recent publications showing their potential application in diseases where a physiological increase of endogenous protein expression can be therapeutic
    • …
    corecore