8,135 research outputs found

    Scalar field dark energy and Cosmic Microwave Background

    Full text link
    A dynamical scalar field represents the simplest generalization of a pure Cosmological Constant as a candidate to explain the recent evidence in favour of the accelerated cosmic expansion. We review the dynamical properties of such a component, and argue that, even if the background expectation value of this field is fixed and the equation of state is the same as a Cosmological Constant, scalar field fluctuations can still be used to distinguish the two components. We compare predicted spectra of Cosmic Microvave Background (CMB) anisotropies in tracking scalar field cosmologies with the present CMB data, in order to get constraints on the amount and equation of state of dark energy. High precision experiments like SNAP, {\sc Planck} and {\sc SNfactory}, together with the data on Large Scale Structure, are needed to probe this issue with the necessary accuracy. Here we show the intriguing result that, with a strong prior on the value of the Hubble constant today, the assumption of a flat universe, and consistency relations between amplitude and spectral index of primordial gravitational waves, the present CMB data at 1σ1\sigma give indication of a dark energy equation of state larger than -1, while the ordinary Cosmological Constant is recovered at 2σ2\sigma.Comment: 4 pages including 2 figures, Dark Matter 2002 proceedings, Nucl.Phys.B in pres

    Implications for quintessence models from MAXIMA-1 and BOOMERANG-98

    Full text link
    Prompted by the recent MAXIMA-1 and BOOMERANG-98 measurements of the cosmic microwave background (CMB) anisotropy power spectrum, and motivated by the results from the observation of high-redshift Type Ia supernovae, we investigate CMB anisotropies in quintessence models in order to characterize the nature of the dark energy today. We perform a Bayesian likelihood analysis, using the MAXIMA-1 and BOOMERANG-98 published bandpowers, in combination with COBE/DMR, to explore the space of quintessence parameters: the quintessence energy density \Omega_\phi and equation of state w_\phi. We restrict our analysis to flat, scale-invariant, inflationary adiabatic models. We find that this simple class of inflationary models, with a quintessence component \Omega_\phi < ~0.7, -1 < = w_\phi < ~-0.5, is in good agreement with the data. Within the assumptions of our analysis, pure quintessence models seem to be slightly favored, although the simple cosmological constant scenario is consistent with the data.Comment: 4 pages, 3 figures. Reflects version accepted for publication by ApJ Letter

    Host lifestyle affects human microbiota on daily timescales

    Get PDF
    Background: Disturbance to human microbiota may underlie several pathologies. Yet, we lack a comprehensive understanding of how lifestyle affects the dynamics of human-associated microbial communities. Results: Here, we link over 10,000 longitudinal measurements of human wellness and action to the daily gut and salivary microbiota dynamics of two individuals over the course of one year. These time series show overall microbial communities to be stable for months. However, rare events in each subjects’ life rapidly and broadly impacted microbiota dynamics. Travel from the developed to the developing world in one subject led to a nearly two-fold increase in the Bacteroidetes to Firmicutes ratio, which reversed upon return. Enteric infection in the other subject resulted in the permanent decline of most gut bacterial taxa, which were replaced by genetically similar species. Still, even during periods of overall community stability, the dynamics of select microbial taxa could be associated with specific host behaviors. Most prominently, changes in host fiber intake positively correlated with next-day abundance changes among 15% of gut microbiota members. Conclusions: Our findings suggest that although human-associated microbial communities are generally stable, they can be quickly and profoundly altered by common human actions and experiences.National Science Foundation (U.S.) (Grant 0821391

    Intraocular pressure changes during femtosecond laser-assisted cataract surgery: A comparison between two different patient interfaces

    Get PDF
    Purpose. The aim of this retrospective cohort study was to evaluate intraocular pressure (IOP) changes during femtosecond laser-assisted cataract surgery (FLACS) using two different patient interface systems. Methods. 116 eyes of 116 patients scheduled for cataract surgery were divided into 2 groups: group 1 (61 eyes) and group 2 (55 eyes) underwent FLACS using Catalys Laser with fluid interface (liquid optics interface, LOI) and LenSx Laser with curved interface and soft contact lens (SoftFit), respectively. IOP was assessed using a portable rebound tonometer (Icare\uae) preoperatively, after docking, immediately after surgery, at one and seven days postoperatively. Results. In group 1, the mean IOP (\ub1SD) was 14.1 \ub1 0.4 mmHg before surgery, 33.2 \ub1 1.1 mmHg after docking, and 21.4 \ub1 0.9 mmHg immediately after surgery. In group 2, the mean IOP was 13.8 \ub1 0.4 mmHg before surgery, 24.2 \ub1 1.4 mmHg after docking, and 20.2 \ub1 1.2 mmHg immediately after surgery. After the docking procedure, a statistically significant increase in IOP from the baseline was found in both groups (p0.05) using both laser platforms. No intraoperative and postoperative complications were observed. Conclusions. FLACS suction phase resulted in a transient increase of IOP in both groups, especially with the LOI system, and it is probably related to the greater pressure of a suction ring and suction generated through the vacuum, independently from the effect of femtosecond laser itself

    Imaging the first light: experimental challenges and future perspectives in the observation of the Cosmic Microwave Background Anisotropy

    Full text link
    Measurements of the cosmic microwave background (CMB) allow high precision observation of the Last Scattering Surface at redshift zz\sim1100. After the success of the NASA satellite COBE, that in 1992 provided the first detection of the CMB anisotropy, results from many ground-based and balloon-borne experiments have showed a remarkable consistency between different results and provided quantitative estimates of fundamental cosmological properties. During 2003 the team of the NASA WMAP satellite has released the first improved full-sky maps of the CMB since COBE, leading to a deeper insight into the origin and evolution of the Universe. The ESA satellite Planck, scheduled for launch in 2007, is designed to provide the ultimate measurement of the CMB temperature anisotropy over the full sky, with an accuracy that will be limited only by astrophysical foregrounds, and robust detection of polarisation anisotropy. In this paper we review the experimental challenges in high precision CMB experiments and discuss the future perspectives opened by second and third generation space missions like WMAP and Planck.Comment: To be published in "Recent Research Developments in Astronomy & Astrophysics Astrophysiscs" - Vol I

    What's Behind Acoustic Peaks in the Cosmic Microwave Background Anisotropies

    Get PDF
    We give a brief review of the physics of acoustic oscillations in Cosmic Microwave Background (CMB) anisotropies. As an example of the impact of their detection in cosmology, we show how the present data on CMB angular power spectrum on sub-degree scales can be used to constrain dark energy cosmological models.Comment: 6 pages, proceedings to the TAUP2001 conference, LNGS, Italy, Sept. 200
    corecore