2,924 research outputs found
Buzançais – La Savatte
Date de l'opération : 1990 (DF) Inventeur(s) : Perrot P Les travaux d'aménagement d'un étang et le creusement de tranchées ont permis de découvrir les fondations de plusieurs murs gallo-romains appartenant vraisemblablement à une villa (Beigneux, 1990 ; Quere, 1991). Le matériel archéologique recueilli est peu abondant (monnaies, fibules, céramique, enduits peints)
Quantum Brayton cycle with coupled systems as working substance
We explore the quantum version of Brayton cycle with a composite system as
the working substance. The actual Brayton cycle consists of two adiabatic and
two isobaric processes. Two pressures can be defined in our isobaric process,
one corresponds to the external magnetic field (characterized by ) exerted
on the system, while the other corresponds to the coupling constant between the
subsystems (characterized by ). As a consequence, we can define two types
of quantum Brayton cycle for the composite system. We find that the subsystem
experiences a quantum Brayton cycle in one quantum Brayton cycle (characterized
by ), whereas the subsystem's cycle is of quantum Otto in another Brayton
cycle (characterized by ). The efficiency for the composite system equals
to that for the subsystem in both cases, but the work done by the total system
are usually larger than the sum of work done by the two subsystems. The other
interesting finding is that for the cycle characterized by , the subsystem
can be a refrigerator while the total system is a heat engine. The result in
the paper can be generalized to a quantum Brayton cycle with a general coupled
system as the working substance.Comment: 7 pages, 3 figures, accepted by Phys. Rev.
Efficient multibeam sonar calibration and performance evaluation
Quantitative applications of mobile multibeam sonar in aquatic ecology and fisheries require accurate and efficient in-tank calibration methodologies. Calibration factors for a Simrad SM20 multibeam sonar are experimentally extracted thereby enabling sonar estimation of target strength and volume backscattering strength. Measured and modeled sonar characteristics are systematically compared and show good overall correlation. Due to the limited angular span of the sonar head array, well quantified sonar operation is restricted to an equatorial angular sector of only 80° (vs. rated 120°) in 'imaging' mode. In 'echo-sounder' mode, the 'high' power transmit setting appears to introduce artifacts. A routine in-tank measurement procedure is described which for given multibeam sonar minimizes the time required for quality multibeam calibration
The Path Integral Monte Carlo Calculation of Electronic Forces
We describe a method to evaluate electronic forces by Path Integral Monte
Carlo (PIMC). Electronic correlations, as well as thermal effects, are included
naturally in this method. For fermions, a restricted approach is used to avoid
the ``sign'' problem. The PIMC force estimator is local and has a finite
variance. We applied this method to determine the bond length of H and the
chemical reaction barrier of H+HH+H. At low
temperature, good agreement is obtained with ground state calculations. We
studied the proton-proton interaction in an electron gas as a simple model for
hydrogen impurities in metals. We calculated the force between the two protons
at two electronic densities corresponding to Na () and Al
() using a supercell with 38 electrons. The result is compared to
previous calculations. We also studied the effect of temperature on the
proton-proton interaction. At very high temperature, our result agrees with the
Debye screening of electrons. As temperature decreases, the Debye theory fails
both because of the strong degeneracy of electrons and most importantly, the
formation of electronic bound states around the protons.Comment: 18 pages, 10 figure
The 2-D electron gas at arbitrary spin polarizations and arbitrary coupling strengths: Exchange-correlation energies, distribution functions and spin-polarized phases
We use a recent approach [Phys. Rev. Letters, {\bf 84}, 959 (2000)] for
including Coulomb interactions in quantum systems via a classical mapping of
the pair-distribution functions (PDFs) for a study of the 2-D electron gas. As
in the 3-D case, the ``quantum temperature'' T_q of a classical 2-D Coulomb
fluid which has the same correlation energy as the quantum fluid is determined
as a function of the density parameter r_s. Spin-dependent exchange-correlation
energies are reported. Comparisons of the spin-dependent pair-distributions and
other calculated properties with any available 2-D quantum Monte Carlo (QMC)
results show excellent agreement, strongly favouring more recent QMC data. The
interesting novel physics brought to light by this study are: (a) the
independently determined quantum-temperatures for 3-D and 2-D are found to be
approximately the same, (i.e, universal) function of the classical coupling
constant Gamma. (b) the coupling constant Gamma increases rapidly with r_s in
2-D, making it comparatively more coupled than in 3-D; the stronger coupling in
2-D requires bridge corrections to the hyper- netted-chain method which is
adequate in 3-D; (c) the Helmholtz free energy of spin-polarized and
unpolarized phases have been calculated. The existence of a spin-polarized 2-D
liquid near r_s = 30, is found to be a marginal possibility. These results
pertain to clean uniform 2-D electron systems.Comment: This paper replaces the cond-mat/0109228 submision; the new version
include s more accurate numerical evaluation of the Helmholtz energies of the
para- and ferromagentic 2D fluides at finite temperatures. (Paper accepted
for publication in Phys. Rev. Lett.
- …