56 research outputs found
CCN1 mutation is associated with atrial septal defect
The genetic basis of congenital heart disease remains unknown in most of the cases. Recently, a novel mouse model shed new light on the role of CCN1/CYR61, a matricellular regulatory factor, in cardiac morphogenesis. In a candidate gene approach, we analyzed a cohort of 143 patients with atrial septal defects (ASD) by sequencing the coding exons of CCN1. In addition to three frequent polymorphisms, we identified an extremely rare novel heterozygous missense mutation (c.139C > T; p.R47W) in one patient with severe ASD. The mutation leads to an exchange of residues with quite different properties in a highly conserved position of the N-terminal insulin-like growth factor binding protein module. Further bioinformatic analysis, exclusion of known ASD disease genes as well as the exclusion of the mutation in a very high number of ethnically matched controls (more than 1,000 individuals) and in public genetic databases, indicates that the p.R47W variant is a probable disease-associated mutation. The report about ASD in mice in heterozygous Ccn 1 +/- animals strongly supports this notion. Our study is the first to suggest a relationship between a probable CCN1 mutation and ASD. Our purpose here was to draw attention to CCN1, a gene that we believe may be important for genetic analysis in patients with congenital heart disease
New pathway to bypass the 15O waiting point
We propose the sequential reaction process
O(,)O as a new pathway to bypass of the
O waiting point. This exotic reaction is found to have a surprisingly
high cross section, approximately 10 times higher than the
O(,)O. These cross sections were calculated after
precise measurements of energies and widths of the proton-unbound F low
lying states, obtained using the H(O,p)O reaction. The large
cross section can be understood to arise from the more
efficient feeding of the low energy wing of the ground state resonance by the
gamma decay. The implications of the new reaction in novae explosions and X-ray
bursts are discussed.Comment: submitte
Production of neutron-rich fragments with neutron number N > Nprojectile in the reaction Ca (60 MeV/nucleon) + Ta
Expérience GANIL, Spectrometre LISEInternational audienceThe goal of the present paper is to attempt to clarify the nuclear reaction mechanism leading to the production of fragments at zero degree with neutron number larger than that in the 48Ca projectile, at about 60 MeV per nucleon. The production cross sections of the extremely neutron-rich Si and P isotopes were measured. Concerning the nuclear reaction mechanism leading to the production of these isotopes, one should probably refer to a particular type of transfer mechanism, which results in low excitation energy for the fragments, rather than to the ‘genuine' fragmentation mechanism. An upper limit of about 0.05 pb was estimated for the production cross section for the 47P isotope for which no count was observed
Spectroscopy of the unbound nucleus 18Na
Expérience GANIL, SPIRALInternational audienceThe unbound nucleus 18Na, the intermediate nucleus in the two-proton radioactivity of 19Mg, is studied through the resonant elastic scattering 17Ne(p,17Ne)p. The spectroscopic information obtained in this experiment is discussed and put in perspective with previous measurements and the structure of the mirror nucleus 18N
An above-barrier narrow resonance in <sup>15</sup>F
Intense and purified radioactive beam of post-accelerated O was used
to study the low-lying states in the unbound F nucleus. Exploiting
resonant elastic scattering in inverse kinematics with a thick target, the
second excited state, a resonance at E=4.757(6)(10)~MeV with a width of
=36(5)(14)~keV was measured for the first time with high precision. The
structure of this narrow above-barrier state in a nucleus located two neutrons
beyond the proton drip line was investigated using the Gamow Shell Model in the
coupled channel representation with a C core and three valence protons.
It is found that it is an almost pure wave function of two quasi-bound protons
in the shell.Comment: 8 pages, 2 figures, 1 table, Submitted to Phys. Lett.
- …