6 research outputs found

    Hypoalbuminemia as a predictor of acute kidney injury during colistin treatment

    Get PDF
    This study aimed to assess the predictors of acute kidney injury (AKI) during colistin therapy in a cohort of patients with bloodstream infections (BSI) due to colistin-susceptible Gram-negative bacteria, focusing on the role of serum albumin levels. The study consisted of two parts: (1) a multicentre retrospective clinical study to assess the predictors of AKI during colistin therapy, defined according to the Kidney Disease: Improving Global Outcomes (KDIGO) criteria; and (2) bioinformatic and biochemical characterization of the possible interaction between human serum albumin and colistin. Among the 170 patients included in the study, 71 (42%), 35 (21%), and 11 (6%) developed KDIGO stage 1 (K1-AKI), KDIGO stage 2 (K2-AKI), and KDIGO stage 3 (K3-AKI), respectively. In multivariable analyses, serum albumin <2.5 g/dL was independently associated with K1-AKI (subdistribution hazard ratio [sHR] 1.85, 95% confidence interval [CI] 1.17\u20132.93, p = 0.009) and K2-AKI (sHR 2.37, 95% CI 1.15\u20134.87, p = 0.019). Bioinformatic and biochemical analyses provided additional information nurturing the discussion on how hypoalbuminemia favors development of AKI during colistin therapy. In conclusion, severe hypoalbuminemia independently predicted AKI during colistin therapy in a large cohort of patients with BSI due to colistin-susceptible Gram-negative bacteria. Further study is needed to clarify the underlying causal pathways

    Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy

    Get PDF
    Because hyper-excitability has been shown to be a shared pathophysiological mechanism, we used the latest and largest genome-wide studies in amyotrophic lateral sclerosis (n = 36,052) and epilepsy (n = 38,349) to determine genetic overlap between these conditions. First, we showed no significant genetic correlation, also when binned on minor allele frequency. Second, we confirmed the absence of polygenic overlap using genomic risk score analysis. Finally, we did not identify pleiotropic variants in meta-analyses of the 2 diseases. Our findings indicate that amyotrophic lateral sclerosis and epilepsy do not share common genetic risk, showing that hyper-excitability in both disorders has distinct origins

    Spread of Infection and Lymphocyte Depletion in Mice Depends on Polymerase of Influenza Virus

    No full text
    SC35M is a mouse-adapted variant of the highly pathogenic avian influenza virus SC35. We have previously shown that interspecies adaptation is mediated by mutations in the viral polymerase and that it is paralleled by the acquisition of high pathogenicity for mice. In the present study, we have compared virus spread and organ tropism of SC35 and SC35M in mice. We show that SC35 virus causes mild bronchiolitis in these animals, whereas infection with the mouse-adapted SC35M virus leads to severe hemorrhagic pneumonia with dissemination to other organs, including the brain. In SC35M-infected animals, viral RNA and viral antigen were detected in monocytes and macrophages, and SC35M, unlike SC35, replicated in lymphocyte and macrophage cultures in vitro. SC35M did not induce an adequate cytokine response but, unlike SC35, caused severe lymphopenia in mice. These observations suggest that the high efficiency of the SC35M polymerase is responsible for infection and depletion of lymphocytes and other white blood cells, which results in immune suppression and systemic virus spread

    Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy

    Get PDF
    Because hyper-excitability has been shown to be a shared pathophysiological mechanism, we used the latest and largest genome-wide studies in amyotrophic lateral sclerosis (n = 36,052) and epilepsy (n = 38,349) to determine genetic overlap between these conditions. First, we showed no significant genetic correlation, also when binned on minor allele frequency. Second, we confirmed the absence of polygenic overlap using genomic risk score analysis. Finally, we did not identify pleiotropic variants in meta-analyses of the 2 diseases. Our findings indicate that amyotrophic lateral sclerosis and epilepsy do not share common genetic risk, showing that hyper-excitability in both disorders has distinct origins
    corecore