59 research outputs found

    Spatially mapping thermal transport in graphene by an opto-thermal method

    Get PDF
    Mapping the thermal transport properties of materials at the nanoscale is of critical importance for optimizing heat conduction in nanoscale devices. Several methods to determine the thermal conductivity of materials have been developed, most of them yielding an average value across the sample, thereby disregarding the role of local variations. Here, we present a method for the spatially resolved assessment of the thermal conductivity of suspended graphene by using a combination of confocal Raman thermometry and a finite-element calculations-based fitting procedure. We demonstrate the working principle of our method by extracting the two-dimensional thermal conductivity map of one pristine suspended single-layer graphene sheet and one irradiated using helium ions. Our method paves the way for spatially resolving the thermal conductivity of other types of layered materials. This is particularly relevant for the design and engineering of nanoscale thermal circuits (e.g. thermal diodes)

    Large Conductance Variations in a Mechanosensitive Single-Molecule Junction

    Get PDF
    The appealing feature of molecular electronics is the possibility of exploiting functionality built within a single molecule. This functionality can be employed, for example, for sensing or switching purposes. Thus, ideally, the associated conductance changes should be sizable upon application of external stimuli. Here, we show that a molecular spring can be mechanically compressed or elongated to tune its conductance by up to an order of magnitude by controlling the quantum interference between electronic pathways. Oscillations in the conductance occur when the stress built up in the molecule is high enough to allow the anchoring groups to move along the surface in a stick-slip-like fashion. The mechanical control of quantum interference effects and the resulting large change in molecular conductance open the door for applications in, e.g., a minute mechanosensitive sensing device functional at room temperature.Comment: 23 pages, 6 figure

    Tunable quantum dots from atomically precise graphene nanoribbons using a multi-gate architecture

    Get PDF
    Atomically precise graphene nanoribbons (GNRs) are increasingly attracting interest due to their largely modifiable electronic properties, which can be tailored by controlling their width and edge structure during chemical synthesis. In recent years, the exploitation of GNR properties for electronic devices has focused on GNR integration into field-effect-transistor (FET) geometries. However, such FET devices have limited electrostatic tunability due to the presence of a single gate. Here, we report on the device integration of 9-atom wide armchair graphene nanoribbons (9-AGNRs) into a multi-gate FET geometry, consisting of an ultra-narrow finger gate and two side gates. We use high-resolution electron-beam lithography (EBL) for defining finger gates as narrow as 12 nm and combine them with graphene electrodes for contacting the GNRs. Low-temperature transport spectroscopy measurements reveal quantum dot (QD) behavior with rich Coulomb diamond patterns, suggesting that the GNRs form QDs that are connected both in series and in parallel. Moreover, we show that the additional gates enable differential tuning of the QDs in the nanojunction, providing the first step towards multi-gate control of GNR-based multi-dot systems
    • …
    corecore