7 research outputs found

    Proof-of-principle demonstration of vertical gravity gradient measurement using a single proof mass double-loop atom interferometer

    Full text link
    We demonstrate a proof-of-principle of direct Earth gravity gradient measurement with an atom interferometer-based gravity gradiomter using a single proof mass of cold 87 rubidium atoms. The atomic gradiometer is implemented in the so-called double-loop configuration, hence providing a direct gravity gradient dependent phase shift insensitive do DC acceleration and constant rotation rate. The atom interferometer (AI) can be either operated as a gravimeter or a gradiomter by simply adding an extra Raman π\pi-pulse. We demonstrate gravity gradient measurements first using a vibration isolation platform and second without seismic isolation using the correlation between the AI signal and the vibration signal measured by an auxilliary classical accelerometer. The simplicity of the experimental setup (a single atomic source and unique detection) and the immunity of the AI to rotation-induced contrast loss, make it a good candidate for onboard gravity gradient measurements.Comment: 11 pages, 7 figure

    Zero-velocity atom interferometry using a retroreflected frequency chirped laser

    Get PDF
    International audienceAtom interferometry using stimulated Raman transitions in a retroreflected configuration is the first choice in high-precision measurements because it provides low phase noise, a high-quality Raman wave front, and a simple experimental setup. However, it cannot be used for atoms at zero velocity because two pairs of Raman lasers are simultaneously resonant. Here we report a method which allows this degeneracy to be lifted by using a frequency chirp on the Raman lasers. Using this technique, we realize a Mach-Zehnder atom interferometer hybridized with a force balanced accelerometer which provides horizontal acceleration measurements with a short-term sensitivity of 3.2×10−5ms−2/Hz. This technique could be used for multiaxis inertial sensors, tiltmeters, or atom interferometry in a microgravity environment

    DĂ©veloppement expĂ©rimental d’un capteur inertiel multi-axe Ă  atomes froids hybride embarquable

    No full text
    This work focuses on the development of a cold-atom inertial sensor measuring the gravity, the vertical gravity gradient and the horizontal acceleration, by choosing technologies enabling to obtain an onboard and hybrid inertial sensor. The experimental setup generates a cold atom cloud of 87Rb, allows vertical et horizontal interferometry sequences using retroreflected contrapropagating stimulated Raman transitions, and allows a maximum free fall distance of 20 cm. The sensitivity obtained for the measurement of the gravity is 68 microGal/VHz and the optimal resolution reached 1,4 microGal after 6000 s of integration. The four-pulses interferometry sequence has been used for the measurement of the vertical gravity gradient. The sensitivity and the systematics have been studied. Our measurement, extrapolated with a sensor allowing 1 meter free fall and limited by quantum projection noise, could reach a sensitivity of 13 E/VHz, competitive with state of the-art. This method could be used for the measurement of rotations in an onboard inertiel sensor. A measurement of horizontal acceleration using simple diffraction interferometer with horizontal retroreflected contrapropagation stimulated Raman transitions. To lift the degeneracy of the two Raman transitions in the horizontal axis with zero-velocity atoms, we chirp the frequency of the Raman beam. It allows us to realize a Mach-Zehnder atom interferometer to measure the horizontal acceleration.Ce manuscrit prĂ©sente le dĂ©veloppement expĂ©rimental d’un capteur inertiel Ă  atomes froids mesurant l’accĂ©lĂ©ration de pesanteur, la composante verticale du gradient de gravitĂ© et l’accĂ©lĂ©ration horizontale, en choisissant des technologies qui permettent d’obtenir un capteur inertiel embarquable et hybridĂ© avec des capteurs classiques. Le dispositif expĂ©rimental permet d’effectuer des sĂ©quences d’interfĂ©romĂ©trie verticales et horizontales avec des transitions Raman stimulĂ©es rĂ©trorĂ©flĂ©chies contra-propageantes. La sĂ©quence d’interfĂ©romĂ©trie Ă  quatre impulsions Raman a Ă©tĂ© utilisĂ©e pour mesurer le gradient de gravitĂ©. Les effets systĂ©matiques ont Ă©tĂ© Ă©tudiĂ©es afin d’obtenir l’exactitude de la mesure. Notre mesure extrapolĂ©e avec une chute libre de 1 mĂštre et limitĂ©e par le bruit de projection quantique permettrait d’atteindre des sensibilitĂ©s du mĂȘme ordre que l’état de l’art. Cette mĂ©thode est intĂ©ressante pour un capteur embarquable car elle est facile Ă  mettre en place, et elle est insensible Ă  la force de Coriolis, qui cause une grosse chute de contraste pour un interfĂ©romĂštre Mach-Zehnder en dynamique. Cette mĂ©thode peut ĂȘtre utilisĂ©e pour la mesure de rotation dans un capteur inertiel embarquĂ©. Une mesure de l’accĂ©lĂ©ration horizontale a Ă©tĂ© effectuĂ©e en simple diffraction avec des faisceaux lasers Raman horizontaux contra-propageants et rĂ©tro-rĂ©flĂ©chis. Pour la mesure de l'accĂ©lĂ©ration horizontale, un interfĂ©romĂštre Mach-Zehnder horizontal a Ă©tĂ© utilisĂ©. Une rampe de frĂ©quence est appliquĂ©e sur les faisceaux Raman pour levĂ©e la dĂ©gĂ©nĂ©rescence des deux paires Raman. La mesure effectuĂ©e a une sensibilitĂ© proche de l'Ă©tat de l'art

    Development of a cold-atom multi-axis onboard hybrid inertial sensor

    No full text
    Ce manuscrit prĂ©sente le dĂ©veloppement expĂ©rimental d’un capteur inertiel Ă  atomes froids mesurant l’accĂ©lĂ©ration de pesanteur, la composante verticale du gradient de gravitĂ© et l’accĂ©lĂ©ration horizontale, en choisissant des technologies qui permettent d’obtenir un capteur inertiel embarquable et hybridĂ© avec des capteurs classiques. Le dispositif expĂ©rimental permet d’effectuer des sĂ©quences d’interfĂ©romĂ©trie verticales et horizontales avec des transitions Raman stimulĂ©es rĂ©trorĂ©flĂ©chies contra-propageantes. La sĂ©quence d’interfĂ©romĂ©trie Ă  quatre impulsions Raman a Ă©tĂ© utilisĂ©e pour mesurer le gradient de gravitĂ©. Les effets systĂ©matiques ont Ă©tĂ© Ă©tudiĂ©es afin d’obtenir l’exactitude de la mesure. Notre mesure extrapolĂ©e avec une chute libre de 1 mĂštre et limitĂ©e par le bruit de projection quantique permettrait d’atteindre des sensibilitĂ©s du mĂȘme ordre que l’état de l’art. Cette mĂ©thode est intĂ©ressante pour un capteur embarquable car elle est facile Ă  mettre en place, et elle est insensible Ă  la force de Coriolis, qui cause une grosse chute de contraste pour un interfĂ©romĂštre Mach-Zehnder en dynamique. Cette mĂ©thode peut ĂȘtre utilisĂ©e pour la mesure de rotation dans un capteur inertiel embarquĂ©. Une mesure de l’accĂ©lĂ©ration horizontale a Ă©tĂ© effectuĂ©e en simple diffraction avec des faisceaux lasers Raman horizontaux contra-propageants et rĂ©tro-rĂ©flĂ©chis. Pour la mesure de l'accĂ©lĂ©ration horizontale, un interfĂ©romĂštre Mach-Zehnder horizontal a Ă©tĂ© utilisĂ©. Une rampe de frĂ©quence est appliquĂ©e sur les faisceaux Raman pour levĂ©e la dĂ©gĂ©nĂ©rescence des deux paires Raman. La mesure effectuĂ©e a une sensibilitĂ© proche de l'Ă©tat de l'art.This work focuses on the development of a cold-atom inertial sensor measuring the gravity, the vertical gravity gradient and the horizontal acceleration, by choosing technologies enabling to obtain an onboard and hybrid inertial sensor. The experimental setup generates a cold atom cloud of 87Rb, allows vertical et horizontal interferometry sequences using retroreflected contrapropagating stimulated Raman transitions, and allows a maximum free fall distance of 20 cm. The sensitivity obtained for the measurement of the gravity is 68 microGal/VHz and the optimal resolution reached 1,4 microGal after 6000 s of integration. The four-pulses interferometry sequence has been used for the measurement of the vertical gravity gradient. The sensitivity and the systematics have been studied. Our measurement, extrapolated with a sensor allowing 1 meter free fall and limited by quantum projection noise, could reach a sensitivity of 13 E/VHz, competitive with state of the-art. This method could be used for the measurement of rotations in an onboard inertiel sensor. A measurement of horizontal acceleration using simple diffraction interferometer with horizontal retroreflected contrapropagation stimulated Raman transitions. To lift the degeneracy of the two Raman transitions in the horizontal axis with zero-velocity atoms, we chirp the frequency of the Raman beam. It allows us to realize a Mach-Zehnder atom interferometer to measure the horizontal acceleration

    Proof-of-principle demonstration of vertical-gravity-gradient measurement using a single-proof-mass double-loop atom interferometer

    No full text
    International audienceWe demonstrate a proof-of-principle of direct Earth gravity-gradient measurement with an atom interferometer-based gravity gradiometer using a single proof mass of cold 87 Rb atoms. The atomic gradiometer is implemented in the so-called double-loop configuration, hence providing a direct gravity-gradient dependent phase shift insensitive to DC acceleration and constant rotation rate. The atom interferometer (AI) can be either operated as a gravimeter or a gradiometer by simply adding an extra Raman π-pulse. We demonstrate gravity-gradient measurements first using a vibration isolation platform and second without seismic isolation using the correlation between the AI signal and the vibration signal measured by an auxilliary classical accelerometer allowing to bypass the absence of common-mode vibration noise rejection in a double-loop geometry.The simplicity of the experimental setup (a single atomic source and unique detection) and the immunity of the AI to rotation-induced contrast loss, make it a possible candidate for onboard gravity-gradient measurements

    Tourisme et Grande Guerre

    No full text
    Rien ne paraĂźt plus Ă©loignĂ© de la PremiĂšre Guerre mondiale que l’idĂ©e de tourisme. Pourtant, Ă  bien y regarder, si le conflit rend plus contraignante sa pratique, il ne l’empĂȘche pas. Mieux, la Grande Guerre devient pendant, et plus encore aprĂšs, source de tourisme. Cet ouvrage entend explorer ce front historique encore trĂšs largement mĂ©connu grĂące aux contributions de 28 chercheurs internationaux, historiens pour la plupart, mais Ă©galement gĂ©ographes ou spĂ©cialistes du patrimoine. Bousculant un certain nombre d’idĂ©es reçues, ils dĂ©montrent que la guerre n’est pas une simple parenthĂšse au dĂ©veloppement des pratiques touristiques
    corecore