5,155 research outputs found

    Design and numerical evaluation of full-authority flight control systems for conventional and thruster-augmented helicopters employed in NOE operations

    Get PDF
    The development and methodology is presented for development of full-authority implicit model-following and explicit model-following optimal controllers for use on helicopters operating in the Nap-of-the Earth (NOE) environment. Pole placement, input-output frequency response, and step input response were used to evaluate handling qualities performance. The pilot was equipped with velocity-command inputs. A mathematical/computational trajectory optimization method was employed to evaluate the ability of each controller to fly NOE maneuvers. The method determines the optimal swashplate and thruster input histories from the helicopter's dynamics and the prescribed geometry and desired flying qualities of the maneuver. Three maneuvers were investigated for both the implicit and explicit controllers with and without auxiliary propulsion installed: pop-up/dash/descent, bob-up at 40 knots, and glideslope. The explicit controller proved to be superior to the implicit controller in performance and ease of design

    Blazar surveys with WMAP and Swift

    Get PDF
    We present the preliminary results from two new surveys of blazars that have direct implications on the GLAST detection of extragalactic sources from two different perspectives: microwave selection and a combined deep X-ray/radio selection. The first one is a 41 GHz flux-limited sample extracted from the WMAP 3-yr catalog of microwave point sources. This is a statistically well defined sample of about 200 blazars and radio galaxies, most of which are expected to be detected by GLAST. The second one is a new deep survey of Blazars selected among the radio sources that are spatially coincident with serendipitous sources detected in deep X-ray images (0.3-10 keV) centered on the Gamma Ray Bursts (GRB) discovered by the Swift satellite. This sample is particularly interesting from a statistical viewpoint since a) it is unbiased as GRBs explode at random positions in the sky, b) it is very deep in the X-ray band (\fx \simgt 101510^{-15} \ergs) with a position accuracy of a few arc-seconds, c) it will cover a fairly large (20-30 square deg.) area of sky, d) it includes all blazars with radio flux (1.4 GHz) larger than 10 mJy, making it approximately two orders of magnitude deeper than the WMAP sample and about one order of magnitude deeper than the deepest existing complete samples of radio selected blazars, and e) it can be used to estimate the amount of unresolved GLAST high latitude gamma-ray background and its anisotropy spectrum.Comment: 3 pages, 3 figures, to appear in Proc. of the 1st GLAST Symposium, Feb 5-8, 2007, Stanford, AIP, Eds. S. Ritz, P. F. Michelson, and C. Meega

    Log-parabolic spectra and particle acceleration in blazars. III: SSC emission in the TeV band from Mkn 501

    Full text link
    Curved broad-band spectral distributions of non-thermal sources like blazars are described well by a log-parabolic (LP) law where the second degree term measures the curvature. LP energy spectra can be obtained for relativistic electrons by means of a statistical acceleration mechanism whose probability of acceleration depends on energy. In this paper we compute the spectra radiated by an electron population via synchrotron (S) and Synchro-Self Compton(SSC) processes to derive the relations between the LP parameters. These spectra were obtained by means of an accurate numerical code. We found that the ratio between the curvature parameters of the S spectrum to that of the electrons is equal to about 0.2 instead of 0.25, the value foreseen in the delta approximation. Inverse Compton spectra are also intrinsically curved and can be approximated by a log-parabola only in limited ranges. The curvature parameter, estimated around the SED peak, may vary from a lower value than that of the S spectrum up to that of emitting electrons depending on whether the scattering is in the Thomson or in the Klein-Nishina regime. We applied this analysis to computing the SSC emission from the BL Lac object Mkn 501 during the large flare of April 1997. We fit simultaneous BeppoSAX and CAT data and reproduced intensities and spectral curvatures of both components with good accuracy. The large curvature observed in the TeV range was found to be mainly intrinsic, and therefore did not require a large pair production absorption against the extragalactic background. We regard this finding as an indication that the Universe is more transparent at these energies than previously assumed by several models found in the literature. This conclusion is supported by recent detection of two relatively high redshift blazars with H.E.S.S.Comment: Comments: 12 pages, 11 figures. Accepted for publication in the Astronomy and Astrophysic

    Swift-XRT observation of 34 new INTEGRAL/IBIS AGNs: discovery of Compton thick and other peculiar sources

    Full text link
    For a significant number of the sources detected at high energies (>10 keV) by the INTEGRAL/IBIS and Swift/BAT instruments there is either a lack information about them in the 2-10 keV range or they are totally unidentified. Herein, we report on a sample of 34 IBIS AGN or AGN candidate objects for which there is X-ray data in the Swift/XRT archive. Thanks to these X-ray follow up observations, the identification of the gamma ray emitters has been possible and the spectral shape in terms of photon index and absorption has been evaluated for the first time for the majority of our sample sources. The sample, enlarged to include 4 more AGN already discussed in the literature, has been used to provide photon index and column density distribution. We obtain a mean value of 1.88 with a dispersion of 0.12, i.e. typical of an AGN sample. Sixteen objects (47%) have column densities in excess of 10^{22} cm^{-2} and, as expected, a large fraction of the absorbed sources are within the Sey 2 sample. We have provided a new diagnostic tool (NH versus F(2-10)keV/F(20-100)keV softness ratio) to isolate peculiar objects; we find at least one absorbed Sey 1 galaxy, 3 Compton thick AGN candidates; and one secure example of a "true" type 2 AGN. Within the sample of 10 still unidentified objects, 3 are almost certainly AGN of type 2; 3 to 4 have spectral slopes typical of AGN; and two are located high on the galactic plane and are strong enough radio emitters so that can be considered good AGN candidates.Comment: 15 pages, 5 figures, ApJ accepte

    Timing accuracy of the Swift X-Ray Telescope in WT mode

    Full text link
    The X-Ray Telescope (XRT) on board Swift was mainly designed to provide detailed position, timing and spectroscopic information on Gamma-Ray Burst (GRB) afterglows. During the mission lifetime the fraction of observing time allocated to other types of source has been steadily increased. In this paper, we report on the results of the in-flight calibration of the timing capabilities of the XRT in Windowed Timing read-out mode. We use observations of the Crab pulsar to evaluate the accuracy of the pulse period determination by comparing the values obtained by the XRT timing analysis with the values derived from radio monitoring. We also check the absolute time reconstruction measuring the phase position of the main peak in the Crab profile and comparing it both with the value reported in literature and with the result that we obtain from a simultaneous Rossi X-Ray Timing Explorer (RXTE) observation. We find that the accuracy in period determination for the Crab pulsar is of the order of a few picoseconds for the observation with the largest data time span. The absolute time reconstruction, measured using the position of the Crab main peak, shows that the main peak anticipates the phase of the position reported in literature for RXTE by ~270 microseconds on average (~150 microseconds when data are reduced with the attitude file corrected with the UVOT data). The analysis of the simultaneous Swift-XRT and RXTE Proportional Counter Array (PCA) observations confirms that the XRT Crab profile leads the PCA profile by ~200 microseconds. The analysis of XRT Photodiode mode data and BAT event data shows a main peak position in good agreement with the RXTE, suggesting the discrepancy observed in XRT data in Windowed Timing mode is likely due to a systematic offset in the time assignment for this XRT read out mode.Comment: 6 pages, 4 figures. Accepted for publication on Astronomy&Astrophysic

    Testing the gamma-ray burst variability/peak luminosity correlation on a Swift homogeneous sample

    Full text link
    We test the gamma-ray burst correlation between temporal variability and peak luminosity of the γ\gamma-ray profile on a homogeneous sample of 36 Swift/BAT GRBs with firm redshift determination. This is the first time that this correlation can be tested on a homogeneous data sample. The correlation is confirmed, as long as the 6 GRBs with low luminosity (<5x10^{50} erg s^{-1} in the rest-frame 100-1000 keV energy band) are ignored. We confirm that the considerable scatter of the correlation already known is not due to the combination of data from different instruments with different energy bands, but it is intrinsic to the correlation itself. Thanks to the unprecedented sensitivity of Swift/BAT, the variability/peak luminosity correlation is tested on low-luminosity GRBs. Our results show that these GRBs are definite outliers.Comment: Accepted for Publication in MNRAS. 10 pages, 5 figures, 3 table
    corecore