3,559 research outputs found
Study of X-ray Radiation Damage in Silicon Sensors
The European X-ray Free Electron Laser (XFEL) will deliver 30,000 fully
coherent, high brilliance X-ray pulses per second each with a duration below
100 fs. This will allow the recording of diffraction patterns of single complex
molecules and the study of ultra-fast processes. Silicon pixel sensors will be
used to record the diffraction images. In 3 years of operation the sensors will
be exposed to doses of up to 1 GGy of 12 keV X-rays. At this X-ray energy no
bulk damage in silicon is expected. However fixed oxide charges in the
insulating layer covering the silicon and interface traps at the Si-SiO2
interface will be introduced by the irradiation and build up over time.
We have investigated the microscopic defects in test structures and the
macroscopic electrical properties of segmented detectors as a function of the
X-ray dose. From the test structures we determine the oxide charge density and
the densities of interface traps as a function of dose. We find that both
saturate (and even decrease) for doses between 10 and 100 MGy. For segmented
sensors the defects introduced by the X-rays increase the full depletion
voltage, the surface leakage current and the inter-pixel capacitance. We
observe that an electron accumulation layer forms at the Si-SiO2 interface. Its
width increases with dose and decreases with applied bias voltage. Using TCAD
simulations with the dose dependent parameters obtained from the test
structures, we are able to reproduce the observed results. This allows us to
optimize the sensor design for the XFEL requirements
Recommended from our members
A high-wavenumber boundary-element method for an acoustic scattering problem
In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree ) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval , which only requires the discretization of , we show theoretically and experimentally that the error in computing the acoustic field on is , where is the number of degrees of freedom and is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems
Analysis of high-order finite elements for convected wave propagation
In this paper, we examine the performance of high-order finite element methods (FEM) for aeroacoustic propagation, based on the convected Helmholtz equation. A methodology is presented to measure the dispersion and amplitude errors of the p-FEM, including non-interpolating shape functions, such as ‘bubble’ shape functions. A series of simple test cases are also presented to support the results of the dispersion analysis. The main conclusion is that the properties of p-FEM that make its strength for standard acoustics (e.g., exponential p-convergence, low dispersion error) remain present for flow acoustics as well. However, the flow has a noticeable effect on the accuracy of the numerical solution, even when the change in wavelength due to the mean flow is accounted for, and an approximation of the dispersion error is proposed to describe the influence of the mean flow. Also discussed is the so-called aliasing effect, which can reduce the accuracy of the solution in the case of downstream propagation. This can be avoided by an appropriate choice of mesh resolution
Performance of the EUDET-type beam telescopes
Test beam measurements at the test beam facilities of DESY have been
conducted to characterise the performance of the EUDET-type beam telescopes
originally developed within the EUDET project. The beam telescopes are equipped
with six sensor planes using MIMOSA26 monolithic active pixel devices. A
programmable Trigger Logic Unit provides trigger logic and time stamp
information on particle passage. Both data acquisition framework and offline
reconstruction software packages are available. User devices are easily
integrable into the data acquisition framework via predefined interfaces.
The biased residual distribution is studied as a function of the beam energy,
plane spacing and sensor threshold. Its standard deviation at the two centre
pixel planes using all six planes for tracking in a 6\,GeV
electron/positron-beam is measured to be
(2.88\,\pm\,0.08)\,\upmu\meter.Iterative track fits using the formalism of
General Broken Lines are performed to estimate the intrinsic resolution of the
individual pixel planes. The mean intrinsic resolution over the six sensors
used is found to be (3.24\,\pm\,0.09)\,\upmu\meter.With a 5\,GeV
electron/positron beam, the track resolution halfway between the two inner
pixel planes using an equidistant plane spacing of 20\,mm is estimated to
(1.83\,\pm\,0.03)\,\upmu\meter assuming the measured intrinsic resolution.
Towards lower beam energies the track resolution deteriorates due to increasing
multiple scattering. Threshold studies show an optimal working point of the
MIMOSA26 sensors at a sensor threshold of between five and six times their RMS
noise. Measurements at different plane spacings are used to calibrate the
amount of multiple scattering in the material traversed and allow for
corrections to the predicted angular scattering for electron beams
Une introduction à la nature et au fonctionnement de la physique pour des élèves de seconde.
National audienceCet article propose, décrit et justifie une séquence d'enseignement de seconde ayant pour but de profiter d'une partie du programme actuel de la classe de seconde pour proposer aux élèves une première approche de la nature et du fonctionnement de laphysique, de ses objets d'étude et de ses limites. Cette démarche, conforme aux programmes en vigueur, permet aux enseignants d'initier leurs élèves à l'activité de modélisation et de mettre en évidence sa place centrale en physique ; les élèves sont capablesde la comprendre si les enseignants prennent le temps d'expliciter les choix faits lors de cette démarche de modélisation. Les auteurs donnent aussi les points de vue, souvent proches, d'élèves de seconde et d'enseignants sur ce qu'est la physique et sur ce qu'estun modèle. Comme aboutissement de ce travail, une carte conceptuelle est proposée à l'enseignant pour permettre une analyse plus fine des démarches classiques demandées aux élèves lors de leur activité en classe de physique. L'utilisation de cette carte est illustrée sur une courte partie de la séquence proposée
Commentary: cumulative effects of anodal and priming cathodal tDCS on pegboard test performance and motor cortical excitability
On stability of discretizations of the Helmholtz equation (extended version)
We review the stability properties of several discretizations of the
Helmholtz equation at large wavenumbers. For a model problem in a polygon, a
complete -explicit stability (including -explicit stability of the
continuous problem) and convergence theory for high order finite element
methods is developed. In particular, quasi-optimality is shown for a fixed
number of degrees of freedom per wavelength if the mesh size and the
approximation order are selected such that is sufficiently small and
, and, additionally, appropriate mesh refinement is used near
the vertices. We also review the stability properties of two classes of
numerical schemes that use piecewise solutions of the homogeneous Helmholtz
equation, namely, Least Squares methods and Discontinuous Galerkin (DG)
methods. The latter includes the Ultra Weak Variational Formulation
Cerebral perturbations during exercise in hypoxia.: The brain during hypoxic exercise
International audienceReduction of aerobic exercise performance observed under hypoxic conditions is mainly attributed to altered muscle metabolism due to impaired O(2) delivery. It has been recently proposed that hypoxia-induced cerebral perturbations may also contribute to exercise performance limitation. A significant reduction in cerebral oxygenation during whole body exercise has been reported in hypoxia compared with normoxia, while changes in cerebral perfusion may depend on the brain region, the level of arterial oxygenation and hyperventilation induced alterations in arterial CO(2). With the use of transcranial magnetic stimulation, inconsistent changes in cortical excitability have been reported in hypoxia, whereas a greater impairment in maximal voluntary activation following a fatiguing exercise has been suggested when arterial O(2) content is reduced. Electromyographic recordings during exercise showed an accelerated rise in central motor drive in hypoxia, probably to compensate for greater muscle contractile fatigue. This accelerated development of muscle fatigue in moderate hypoxia may be responsible for increased inhibitory afferent signals to the central nervous system leading to impaired central drive. In severe hypoxia (arterial O(2) saturation <70-75%), cerebral hypoxia per se may become an important contributor to impaired performance and reduced motor drive during prolonged exercise. This review examines the effects of acute and chronic reduction in arterial O(2) (and CO(2)) on cerebral blood flow and cerebral oxygenation, neuronal function, and central drive to the muscles. Direct and indirect influences of arterial deoxygenation on central command are separated. Methodological concerns as well as future research avenues are also considered
- …
