159 research outputs found

    Thermal Ground Testing of Concorde and Veras or Improvement in French Test Methods and Facilities

    Get PDF
    The more numerous the requirements are in aerospace vehicle operations, the more the ground test facility have to improve both the nature and the quality of the equipment as well as the volume and the size of the sites, for the importance of ground testing cannot be over emphasized. As an example, two ground test programs are reviewed in this presentation, namely CONCORDE and VERAS. Special emphasis is given to the facility implementations due respectively to the static and fatigue test of CONCORDE in heat environment and to the dynamic test of VERAS in high level and transient temperature conditions

    Association of plasma zinc levels with anti-SARS-CoV-2 IgG and IgA seropositivity in the general population: A case-control study.

    Get PDF
    Some micronutrients have key roles in immune defence, including mucosal defence mechanisms and immunoglobulin production. Altered micronutrient status has been linked with COVID-19 infection and disease severity. We assessed the associations of selected circulating micronutrients with anti-SARS-CoV-2 IgG and IgA seropositivity in the Swiss community using early pandemic data. Case-control study comparing the first PCR-confirmed COVID-19 symptomatic cases in the Vaud Canton (May to June 2020, n = 199) and controls (random population sample, n = 447), seronegative for IgG and IgA. The replication analysis included seropositive (n = 134) and seronegative (n = 152) close contacts from confirmed COVID-19 cases. Anti-SARS-CoV-2 IgG and IgA levels against the native trimeric spike protein were measured using the Luminex immunoassay. We measured plasma Zn, Se and Cu concentrations by ICP-MS, and 25-hydroxy-vitamin D <sub>3</sub> (25(OH)D <sub>3</sub> ) with LC-MS/MS and explored associations using multiple logistic regression. The 932 participants (54.1% women) were aged 48.6 ± 20.2 years (±SD), BMI 25.0 ± 4.7 kg/m <sup>2</sup> with median C-Reactive Protein 1 mg/l. In logistic regressions, log <sub>2</sub> (Zn) plasma levels were negatively associated with IgG seropositivity (OR [95% CI]: 0.196 [0.0831; 0.465], P < 0.001; replication analyses: 0.294 [0.0893; 0.968], P < 0.05). Results were similar for IgA. We found no association of Cu, Se, and 25(OH)D <sub>3</sub> with anti-SARS-CoV-2 IgG or IgA seropositivity. Low plasma Zn levels were associated with higher anti-SARS-CoV-2 IgG and IgA seropositivity in a Swiss population when the initial viral variant was circulating, and no vaccination available. These results suggest that adequate Zn status may play an important role in protecting the general population against SARS-CoV-2 infection. CORONA IMMUNITAS:: ISRCTN18181860

    Differential cargo mobilisation within Weibel-Palade bodies after transient fusion with the plasma membrane.

    Get PDF
    Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs) during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine whether WPB cargo molecules are differentially re-mobilised, we applied FRAP to residual post-fusion WPB structures formed after transient exocytosis in which some or all of the fluorescent cargo was retained. Transient fusion resulted in WPB collapse from a rod to a spheroid shape accompanied by substantial swelling (>2 times by surface area) and membrane mixing between the WPB and plasma membranes. Post-fusion WPBs supported cumulative WPB exocytosis. To quantify diffusion inside rounded organelles we developed a method of FRAP analysis based on image moments. FRAP analysis showed that von Willebrand factor-EGFP (VWF-EGFP) and the VWF-propolypeptide-EGFP (Pro-EGFP) were immobile in post-fusion WPBs. Because Eotaxin-3-EGFP and ssEGFP (small soluble cargo proteins) were largely depleted from post-fusion WPBs, we studied these molecules in cells preincubated in the weak base NH4Cl which caused WPB alkalinisation and rounding similar to that produced by plasma membrane fusion. In these cells we found a dramatic increase in mobilities of Eotaxin-3-EGFP and ssEGFP that exceeded the resolution of our method (∼ 2.4 µm2/s mean). In contrast, the membrane mobilities of EGFP-CD63 and EGFP-Rab27A in post-fusion WPBs were unchanged, while P-selectin-EGFP acquired mobility. Our data suggest that selective re-mobilisation of chemokines during transient fusion contributes to selective chemokine secretion during transient WPB exocytosis. Selective secretion provides a mechanism to regulate intravascular inflammatory processes with reduced risk of thrombosis

    Quantifying Exocytosis by Combination of Membrane Capacitance Measurements and Total Internal Reflection Fluorescence Microscopy in Chromaffin Cells

    Get PDF
    Total internal reflection fluorescence microscopy (TIRF-Microscopy) allows the observation of individual secretory vesicles in real-time during exocytosis. In contrast to electrophysiological methods, such as membrane capacitance recording or carbon fiber amperometry, TIRF-Microscopy also enables the observation of vesicles as they reside close to the plasma membrane prior to fusion. However, TIRF-Microscopy is limited to the visualization of vesicles that are located near the membrane attached to the glass coverslip on which the cell grows. This has raised concerns as to whether exocytosis measured with TIRF-Microscopy is comparable to global secretion of the cell measured with membrane capacitance recording. Here we address this concern by combining TIRF-Microscopy and membrane capacitance recording to quantify exocytosis from adrenal chromaffin cells. We found that secretion measured with TIRF-Microscopy is representative of the overall secretion of the cells, thereby validating for the first time the TIRF method as a measure of secretion. Furthermore, the combination of these two techniques provides a new tool for investigating the molecular mechanism of synaptic transmission with combined electrophysiological and imaging techniques

    Polyamine sensitivity of gap junctions is required for skin pattern formation in zebrafish

    Get PDF
    Gap junctions allow the direct and bidirectional transfer of small molecules between cells. Polyamine sensitivity, which has been observed for a certain gap junction in vitro, confers rectification property to gap junction. Here we report that the polyamine sensitivity of gap junctions in vivo is crucial for skin pattern formation in zebrafish. Transgenic experiments have revealed that several connexin genes were able to rescue the spot phenotype of mutant zebrafish. Mutational analyses of the N-terminal region of connexins revealed that the ExxxE motif, a hypothetical polyamine-binding site, was important for connexin's role in pattern formation. Ectopic expression of spermidine/spermine N1-acetyltransferase (SSAT), a polyamine metabolic enzyme, also caused stripe pattern changes, which further indicates that the polyamine sensitivity of gap junctions is crucial. This is the first report to show that polyamine sensitivity has a physiologically relevant function and is related to skin pattern formation in animals

    Analyse des signaux pour un dispositif de mesure et de stimulation du système nerveux central

    Get PDF
    - Un des enjeux actuels en Neurosciences est de pouvoir enregistrer simultanément les activités d'un grand nombre de cellules au sein de grands réseaux de neurones, et de pouvoir stimuler de manière dynamique ces réseaux afin d'en contrôler les activités. Le but du projet Neurocom est de réaliser un système multiélectrode haute densité intégré sur silicium, permettant d'enregistrer et de stimuler de grands réseaux de neurones in vitro. Ce dispositif sera constitué d'une microstructure d'électrodes stérilisable hybridée sur un circuit analogique intégré (préamplification, filtrage, multiplexage, stimulation), lui-même interfacé via une carte numérique de commande et acquisition reliée à un PC. Afin de pouvoir mieux appréhender les phénomènes bioélectriques et électrochimiques à l'interface capteur et donc mieux spécifier le cahier des charges et l'architecture du système, la maquette de test NEUROCOM1 a été conçue en électronique discrète et est actuellement utilisée pour conduire différents tests

    In Vivo Determination of Fluctuating Forces during Endosome Trafficking Using a Combination of Active and Passive Microrheology

    Get PDF
    BACKGROUND: Regulation of intracellular trafficking is a central issue in cell biology. The forces acting on intracellular vesicles (endosomes) can be assessed in living cells by using a combination of active and passive microrheology. METHODOLOGY/PRINCIPAL FINDINGS: This dual approach is based on endosome labeling with magnetic nanoparticles. The resulting magnetic endosomes act both as probes that can be manipulated with external magnetic fields to infer the viscoelastic modulus of their surrounding microenvironment, and as biological vehicles that are trafficked along the microtubule network by means of forces generated by molecular motors. The intracellular viscoelastic modulus exhibits power law dependence with frequency, which is microtubule and actin-dependent. The mean square displacements of endosomes do not follow the predictions of the fluctuation-dissipation theorem, which offers evidence for active force generation. Microtubule disruption brings the intracellular medium closer to thermal equilibrium: active forces acting on the endosomes depend on microtubule-associated motors. The power spectra of these active forces, deduced through the use of a generalized Langevin equation, show a power law decrease with frequency and reveal an actin-dependent persistence of the force with time. Experimental spectra have been reproduced by a simple model consisting in a series of force steps power-law distributed in time. This model enlightens the role of the cytoskeleton dependent force exerted on endosomes to perform intracellular trafficking. CONCLUSIONS/SIGNIFICANCE: In this work, the influence of cytoskeleton components and molecular motors on intracellular viscoelasticity and transport is addressed. The use of an original probe, the magnetic endosome, allows retrieving the power spectrum of active forces on these organelles thanks to interrelated active and passive measures. Finally a computational model gives estimates of the force itself and hence of the number of the motors pulling on endosomes

    Deoxycholic acid induces the overexpression of intestinal mucin, MUC2, via NF-kB signaling pathway in human esophageal adenocarcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mucin alterations are a common feature of esophageal neoplasia, and alterations in MUC2 mucin have been associated with tumor progression in the esophagus. Bile acids have been linked to esophageal adenocarcinoma and mucin secretion, but their effects on mucin gene expression in human esophageal adenocarcinoma cells is unknown.</p> <p>Methods</p> <p>Human esophageal adenocarcinoma cells were treated 18 hours with 50–300 μM deoxycholic acid, chenodeoxycholic acid, or taurocholic acid. MUC2 transcription was assayed using a MUC2 promoter reporter luciferase construct and MUC2 protein was assayed by Western blot analysis. Transcription Nuclear factor-κB activity was measured using a Nuclear factor-κB reporter construct and confirmed by Western blot analysis for Nuclear factor-κB p65.</p> <p>Results</p> <p>MUC2 transcription and MUC2 protein expression were increased four to five fold by bile acids in a time and dose-dependent manner with no effect on cell viability. Nuclear factor-κB activity was also increased. Treatment with the putative chemopreventive agent aspirin, which decreased Nuclear factor-κB activity, also decreased MUC2 transcription. Nuclear factor-κB p65 siRNA decreased MUC2 transcription, confirming the significance of Nuclear factor-κB in MUC2 induction by deoxycholic acid. Calphostin C, a specific inhibitor of protein kinase C (PKC), greatly decreased bile acid induced MUC2 transcription and Nuclear factor-κB activity, whereas inhibitors of MAP kinase had no effect.</p> <p>Conclusion</p> <p>Deoxycholic acid induced MUC2 overexpression in human esophageal adenocarcinoma cells by activation of Nuclear factor-κB transcription through a process involving PKC-dependent but not PKA, independent of activation of MAP kinase.</p

    Fast Homeostatic Plasticity of Inhibition via Activity-Dependent Vesicular Filling

    Get PDF
    Synaptic activity in the central nervous system undergoes rapid state-dependent changes, requiring constant adaptation of the homeostasis between excitation and inhibition. The underlying mechanisms are, however, largely unclear. Chronic changes in network activity result in enhanced production of the inhibitory transmitter GABA, indicating that presynaptic GABA content is a variable parameter for homeostatic plasticity. Here we tested whether such changes in inhibitory transmitter content do also occur at the fast time scale required to ensure inhibition-excitation-homeostasis in dynamic cortical networks. We found that intense stimulation of afferent fibers in the CA1 region of mouse hippocampal slices yielded a rapid and lasting increase in quantal size of miniature inhibitory postsynaptic currents. This potentiation was mediated by the uptake of GABA and glutamate into presynaptic endings of inhibitory interneurons (the latter serving as precursor for the synthesis of GABA). Thus, enhanced release of inhibitory and excitatory transmitters from active networks leads to enhanced presynaptic GABA content. Thereby, inhibitory efficacy follows local neuronal activity, constituting a negative feedback loop and providing a mechanism for rapid homeostatic scaling in cortical circuits

    Forty years on: clathrin-coated pits continue to fascinate

    Get PDF
    Clathrin mediated endocytosis (CME) is a fundamental process in cell biology and has been extensively investigated throughout the last several decades. Every cell biologist learns about it at some point during their education and the beauty of this process has led many of us to go deeper and make it the topic of our own research. Great progress has been made towards elucidating the mechanisms of CME and the field is becoming increasingly complex with several hundred new publications every year. This makes it easy to get lost in the vast amount of literature and to forget about the fundamentals of the field, based on the careful interpretation of simple observations made over 40 years ago. A study performed by Anderson, Brown and Goldstein in 1977 (Anderson et al., 1977) is a prime example of this. We therefore want to take a step back and examine how this seminal study was pivotal to our understanding of CME and its progression into ever increasing complexity over the last four decades
    corecore