107 research outputs found

    Arctic sea-ice melt in 2008 and the role of solar heating

    Get PDF
    There has been a marked decline in the summer extent of Arctic sea ice over the past few decades. Data from autonomous ice mass-balance buoys can enhance our understanding of this decline. These buoys monitor changes in snow deposition and ablation, ice growth, and ice surface and bottom melt. Results from the summer of 2008 showed considerable large-scale spatial variability in the amount of surface and bottom melt. Small amounts of melting were observed north of Greenland, while melting in the southern Beaufort Sea was quite large. Comparison of net solar heat input to the ice and heat required for surface ablation showed only modest correlation. However, there was a strong correlation between solar heat input to the ocean and bottom melting. As the ice concentration in the Beaufort Sea region decreased, there was an increase in solar heat to the ocean and an increase in bottom melting

    A method to derive satellite PAR albedo time series over first-year sea ice in the Arctic Ocean

    Get PDF
    Deriving sea ice albedo from spaceborne platforms is of interest to model the propagation of the photosynthetically available radiation (PAR) through Arctic sea ice. We show here that use of the Moderate Resolution Imaging Spectroradiometer (MODIS) operational surface reflectance satellite product to derive albedo in the PAR spectral range is possible. To retrieve PAR albedo from the remote sensing surface reflectance, we trained a predictive model based on a principal component analysis with in situ and simulated data. The predictive model can be applied to first-year sea ice surfaces such as dry snow, melting snow, bare ice and melt ponds. Based on in situ measurements and the prescribed atmospheric correction uncertainty, the estimated PAR albedo had a mean absolute error of 0.057, a root mean square error of 0.074 and an R2 value of 0.91. As a demonstration, we retrieved PAR albedo on a 9-km2 area over late spring and early summer 2015 and 2016 at a coastal location in Baffin Bay, Canada. On-site measurements of PAR albedo, melt pond fraction and types of precipitation were used to examine the estimated PAR albedo time series. The results show a dynamic and realistic PAR albedo time series, although clouds remained the major obstacle to the method. This easy-to-implement model may be used for the partitioning of PAR in the Arctic Ocean and ultimately to better understand the dynamics of marine primary producers.publishedVersio

    Surface freshening in the Arctic Ocean's Eurasian Basin : an apparent consequence of recent change in the wind-driven circulation

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C00D03, doi:10.1029/2011JC006975.Data collected by an autonomous ice-based observatory that drifted into the Eurasian Basin between April and November 2010 indicate that the upper ocean was appreciably fresher than in 2007 and 2008. Sea ice and snowmelt over the course of the 2010 drift amounted to an input of less than 0.5 m of liquid freshwater to the ocean (comparable to the freshening by melting estimated for those previous years), while the observed change in upper-ocean salinity over the melt period implies a freshwater gain of about 0.7 m. Results of a wind-driven ocean model corroborate the observations of freshening and suggest that unusually fresh surface waters observed in parts of the Eurasian Basin in 2010 may have been due to the spreading of anomalously fresh water previously residing in the Beaufort Gyre. This flux is likely associated with a 2009 shift in the large-scale atmospheric circulation to a significant reduction in strength of the anticyclonic Beaufort Gyre and the Transpolar Drift Stream.This work was funded by the National Science Foundation Office of Polar Programs Arctic Sciences Section under awards ARC‐0519899, ARC‐0856479, and ARC‐ 0806306

    Winter-to-summer transition of Arctic sea ice breakup and floe size distribution in the Beaufort Sea

    Get PDF
    Breakup of the near-continuous winter sea ice into discrete summer ice floes is an important transition that dictates the evolution and fate of the marginal ice zone (MIZ) of the Arctic Ocean. During the winter of 2014, more than 50 autonomous drifting buoys were deployed in four separate clusters on the sea ice in the Beaufort Sea, as part of the Office of Naval Research MIZ program. These systems measured the ocean-ice-atmosphere properties at their location whilst the sea ice parameters in the surrounding area of these buoy clusters were continuously monitored by satellite TerraSAR-X Synthetic Aperture Radar. This approach provided a unique Lagrangian view of the winter-to-summer transition of sea ice breakup and floe size distribution at each cluster between March and August. The results show the critical timings of a) temporary breakup of winter sea ice coinciding with strong wind events and b) spring breakup (during surface melt, melt ponding and drainage) leading to distinctive summer ice floes. Importantly our results suggest that summer sea ice floe distribution is potentially affected by the state of winter sea ice, including the composition and fracturing (caused by deformation events) of winter sea ice, and that substantial mid-summer breakup of sea ice floes is likely linked to the timing of thermodynamic melt of sea ice in the area. As the rate of deformation and thermodynamic melt of sea ice has been increasing in the MIZ in the Beaufort Sea, our results suggest that these elevated factors would promote faster and more enhanced breakup of sea ice, leading to a higher melt rate of sea ice and thus a more rapid advance of the summer MIZ

    Atmospheric conditions in the central Arctic Ocean through the melt seasons of 2012 and 2013: Impact on surface conditions and solar energy deposition into the ice-ocean system

    Get PDF
    Spectral Radiation Buoys and ice mass balance buoys were deployed on first-year ice near the North Pole in April 2012 and 2013, collecting in-band (350-800nm) solar radiation and ice and snow mass balance data over the complete summer melt seasons. With complementary European ERA-Interim reanalysis, National Centers for Environmental Prediction (NCEP) Climate forecast system version 2 (CFSv2) analysis and satellite passive microwave data, we examine the evolution of atmospheric and surface melt conditions in the two differing melt seasons. Prevailing atmospheric conditions contributed to a longer and more continuous melt season in summer 2012 than in 2013, which was corroborated by in situ observations. ERA-Interim reanalysis data showed that longwave radiation likely played a key role in delaying the snowmelt onset in 2013. The earlier melt onset in 2012 reduced the albedo, providing a positive ice-albedo feedback at a time when solar insolation was high. Due to earlier melt onset and later freeze-up in 2012, more solar heat was deposited into the ice-ocean system than in 2013. Summer 2013 was characterized by later melt onset, intermittent freezing events and an earlier fall freeze-up, resulting in considerably fewer effective days of surface melt and a higher average albedo. Calculations for idealized seasonal albedo evolution show that moving the melt onset just 1week earlier in mid-June increases the total absorbed solar radiation by nearly 14% for the summer season. Therefore, the earlier melt onset may have been one of the most important factors driving the more dramatic melt season in 2012 than 2013, though atmospheric circulation patterns, e.g., cyclone in early August 2012, likely contributed as well

    Arctic system on trajectory to new state

    Get PDF
    The Arctic system is moving toward a new state that falls outside the envelope of glacial-interglacial fluctuations that prevailed during recent Earth history. This future Arctic is likely to have dramatically less permanent ice than exists at present. At the present rate of change, a summer ice-free Arctic Ocean within a century is a real possibility, a state not witnessed for at least a million years. The change appears to be driven largely by feedback-enhanced global climate warming, and there seem to be few, if any processes or feedbacks within the Arctic system that are capable of altering the trajectory toward this “super interglacial” state
    • 

    corecore