70 research outputs found
Density of bulk trap states in organic semiconductor crystals: discrete levels induced by oxygen in rubrene
The density of trap states in the bandgap of semiconducting organic single
crystals has been measured quantitatively and with high energy resolution by
means of the experimental method of temperature-dependent
space-charge-limited-current spectroscopy (TD-SCLC). This spectroscopy has been
applied to study bulk rubrene single crystals, which are shown by this
technique to be of high chemical and structural quality. A density of deep trap
states as low as ~ 10^{15} cm^{-3} is measured in the purest crystals, and the
exponentially varying shallow trap density near the band edge could be
identified (1 decade in the density of states per ~25 meV). Furthermore, we
have induced and spectroscopically identified an oxygen related sharp hole bulk
trap state at 0.27 eV above the valence band.Comment: published in Phys. Rev. B, high quality figures:
http://www.cpfs.mpg.de/~krellner
Field-induced charge transport at the surface of pentacene single crystals: a method to study charge dynamics of 2D electron systems in organic crystals
A method has been developed to inject mobile charges at the surface of
organic molecular crystals, and the DC transport of field-induced holes has
been measured at the surface of pentacene single crystals. To minimize damage
to the soft and fragile surface, the crystals are attached to a pre-fabricated
substrate which incorporates a gate dielectric (SiO_2) and four probe pads. The
surface mobility of the pentacene crystals ranges from 0.1 to 0.5 cm^2/Vs and
is nearly temperature-independent above ~150 K, while it becomes thermally
activated at lower temperatures when the induced charges become localized.
Ruling out the influence of electric contacts and crystal grain boundaries, the
results contribute to the microscopic understanding of trapping and detrapping
mechanisms in organic molecular crystals.Comment: 14 pages, 4 figures. Submitted to J. Appl. Phy
Hole mobility in organic single crystals measured by a "flip-crystal" field-effect technique
We report on single crystal high mobility organic field-effect transistors
(OFETs) prepared on prefabricated substrates using a "flip-crystal" approach.
This method minimizes crystal handling and avoids direct processing of the
crystal that may degrade the FET electrical characteristics. A chemical
treatment process for the substrate ensures a reproducible device quality. With
limited purification of the starting materials, hole mobilities of 10.7, 1.3,
and 1.4 cm^2/Vs have been measured on rubrene, tetracene, and pentacene single
crystals, respectively. Four-terminal measurements allow for the extraction of
the "intrinsic" transistor channel resistance and the parasitic series contact
resistances. The technique employed in this study shows potential as a general
method for studying charge transport in field-accumulated carrier channels near
the surface of organic single crystals.Comment: 26 pages, 7 figure
UV/Ozone treatment to reduce metal-graphene contact resistance
We report reduced contact resistance of single-layer graphene devices by
using ultraviolet ozone (UVO) treatment to modify the metal/graphene contact
interface. The devices were fabricated from mechanically transferred, chemical
vapor deposition (CVD) grown, single layer graphene. UVO treatment of graphene
in the contact regions as defined by photolithography and prior to metal
deposition was found to reduce interface contamination originating from
incomplete removal of poly(methyl methacrylate) (PMMA) and photoresist. Our
control experiment shows that exposure times up to 10 minutes did not introduce
significant disorder in the graphene as characterized by Raman spectroscopy. By
using the described approach, contact resistance of less than 200 {\Omega}
{\mu}m was achieved, while not significantly altering the electrical properties
of the graphene channel region of devices.Comment: 17 pages, 5 figure
Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes
Endonucleolytic double-strand DNA break production requires separate strand cleavage events. Although catalytic mechanisms for simple dimeric endonucleases are available, there are many complex nuclease machines which are poorly understood in comparison. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide following convergent ATP-driven translocation. We report the 2.7 Angstroms resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are unexpectedly located upstream of the direction of translocation, inconsistent with simple nuclease domain-dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex where the nuclease domains are distal. Sequencing of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand nicking events combine to produce DNA scission
- …