43 research outputs found

    Targeting Chromatin Complexes in Myeloid Malignancies and Beyond: From Basic Mechanisms to Clinical Innovation

    Get PDF
    The aberrant function of chromatin regulatory networks (epigenetics) is a hallmark of cancer promoting oncogenic gene expression. A growing body of evidence suggests that the disruption of specific chromatin-associated protein complexes has therapeutic potential in malignant conditions, particularly those that are driven by aberrant chromatin modifiers. Of note, a number of enzymatic inhibitors that block the catalytic function of histone modifying enzymes have been established and entered clinical trials. Unfortunately, many of these molecules do not have potent single-agent activity. One potential explanation for this phenomenon is the fact that those drugs do not profoundly disrupt the integrity of the aberrant network of multiprotein complexes on chromatin. Recent advances in drug development have led to the establishment of novel inhibitors of protein–protein interactions as well as targeted protein degraders that may provide inroads to longstanding effort to physically disrupt oncogenic multiprotein complexes on chromatin. In this review, we summarize some of the current concepts on the role epigenetic modifiers in malignant chromatin states with a specific focus on myeloid malignancies and recent advances in early-phase clinical trials

    STAT3 regulated ARF expression suppresses prostate cancer metastasis.

    Get PDF
    Prostate cancer (PCa) is the most prevalent cancer in men. Hyperactive STAT3 is thought to be oncogenic in PCa. However, targeting of the IL-6/STAT3 axis in PCa patients has failed to provide therapeutic benefit. Here we show that genetic inactivation of Stat3 or IL-6 signalling in a Pten-deficient PCa mouse model accelerates cancer progression leading to metastasis. Mechanistically, we identify p19(ARF) as a direct Stat3 target. Loss of Stat3 signalling disrupts the ARF-Mdm2-p53 tumour suppressor axis bypassing senescence. Strikingly, we also identify STAT3 and CDKN2A mutations in primary human PCa. STAT3 and CDKN2A deletions co-occurred with high frequency in PCa metastases. In accordance, loss of STAT3 and p14(ARF) expression in patient tumours correlates with increased risk of disease recurrence and metastatic PCa. Thus, STAT3 and ARF may be prognostic markers to stratify high from low risk PCa patients. Our findings challenge the current discussion on therapeutic benefit or risk of IL-6/STAT3 inhibition.Lukas Kenner and Jan Pencik are supported by FWF, P26011 and the Genome Research-Austria project “Inflammobiota” grants. Helmut Dolznig is supported by the Herzfelder Family Foundation and the Niederösterr. Forschungs-und Bildungsges.m.b.H (nfb). Richard Moriggl is supported by grant SFB-F2807 and SFB-F4707 from the Austrian Science Fund (FWF), Ali Moazzami is supported by Infrastructure for biosciences-Strategic fund, SciLifeLab and Formas, Zoran Culig is supported by FWF, P24428, Athena Chalaris and Stefan Rose-John are supported by the Deutsche Forschungsgemeinschaft (Grant SFB 877, Project A1and the Cluster of Excellence --“Inflammation at Interfaces”). Work of the Aberger lab was supported by the Austrian Science Fund FWF (Projects P25629 and W1213), the European FP7 Marie-Curie Initial Training Network HEALING and the priority program Biosciences and Health of the Paris-Lodron University of Salzburg. Valeria Poli is supported by the Italian Association for Cancer Research (AIRC, No IG13009). Richard Kennedy and Steven Walker are supported by the McClay Foundation and the Movember Centre of Excellence (PC-UK and Movember). Gerda Egger is supported by FWF, P27616. Tim Malcolm and Suzanne Turner are supported by Leukaemia and Lymphoma Research.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms873

    Thrombocytopenia and platelet transfusions in ICU patients: an international inception cohort study (PLOT-ICU)

    Get PDF
    Purpose Thrombocytopenia (platelet count < 150 × 109/L) is common in intensive care unit (ICU) patients and is likely associated with worse outcomes. In this study we present international contemporary data on thrombocytopenia in ICU patients. Methods We conducted a prospective cohort study in adult ICU patients in 52 ICUs across 10 countries. We assessed frequencies of thrombocytopenia, use of platelet transfusions and clinical outcomes including mortality. We evaluated pre-selected potential risk factors for the development of thrombocytopenia during ICU stay and associations between thrombocytopenia at ICU admission and 90-day mortality using pre-specified logistic regression analyses. Results We analysed 1166 ICU patients; the median age was 63 years and 39.5% were female. Overall, 43.2% (95% confidence interval (CI) 40.4–46.1) had thrombocytopenia; 23.4% (20–26) had thrombocytopenia at ICU admission, and 19.8% (17.6–22.2) developed thrombocytopenia during their ICU stay. Non-AIDS-, non-cancer-related immune deficiency, liver failure, male sex, septic shock, and bleeding at ICU admission were associated with the development of thrombocytopenia during ICU stay. Among patients with thrombocytopenia, 22.6% received platelet transfusion(s), and 64.3% of in-ICU transfusions were prophylactic. Patients with thrombocytopenia had higher occurrences of bleeding and death, fewer days alive without the use of life-support, and fewer days alive and out of hospital. Thrombocytopenia at ICU admission was associated with 90-day mortality (adjusted odds ratio 1.7; 95% CI 1.19–2.42). Conclusion Thrombocytopenia occurred in 43% of critically ill patients and was associated with worse outcomes including increased mortality. Platelet transfusions were given to 23% of patients with thrombocytopenia and most were prophylactic.publishedVersio

    Numerische Lösungsmethoden für Differentialspiele mit Schwerpunkt auf nichtkooperativen 2-Personen-Spielen

    No full text
    Diese Dissertation untersucht Zusammenhänge der spieltheoretischen Begriffe des Nash- und Stackelberg-Gleichgewichts in Differenialspielen im N-Spieler-Fall. Weiterhin werden drei verschiedene Lösungskonzepte für das Finden von Gleichgewichten in 2-Spieler-Differentialspielen vorgestellt. Direkte Methoden aus der nichtlinearen Optimierung, der globalen Optimierung und der optimalen Steuerung werden verwendet, um Nash- und Stackelberg-Gleichgewichte in 2-Spieler-Differentialspielen zu finden. Anhand von Anwendungsbeispielen werden die Methoden getestet, analysiert und ausgewertet. Eine Erweiterung des Verfolgungsspiels von Isaacs auf Beschleunigungskomponenten wird betrachtet. Ein bisher unbekanntes Stackelberg-Gleichgewicht wird im Kapitalismusspiel nach Lancaster numerisch berechnet. Zuletzt wird ein Problem aus der Fischerei modelliert und anhand der eingeführten Methoden gelöst.Connections between Nash- and Stackelberg equilibria in differential games with N players are considered in this work. Furthermore three different solution concepts for computing such equilibira in 2-player-games are introduced. Direct methods from nonlinear optimization, global optimization and optimal control are used in order to find Nash- and Stackelberg-equilibria. Moreover there are three applications which are analysed in terms of Nash- and Stackelberg equilibria. The simple pursuit evasion game of Isaacs is considered with additional control components of acceleration. An unknown Stackelberg-equilibrium in the game of capitalism from Lancaster is numerically computed. At last there is a new model of a fishing game that is solved by the methods introduced by this work

    Targeting Chromatin Complexes in Myeloid Malignancies and Beyond: From Basic Mechanisms to Clinical Innovation

    No full text
    The aberrant function of chromatin regulatory networks (epigenetics) is a hallmark of cancer promoting oncogenic gene expression. A growing body of evidence suggests that the disruption of specific chromatin-associated protein complexes has therapeutic potential in malignant conditions, particularly those that are driven by aberrant chromatin modifiers. Of note, a number of enzymatic inhibitors that block the catalytic function of histone modifying enzymes have been established and entered clinical trials. Unfortunately, many of these molecules do not have potent single-agent activity. One potential explanation for this phenomenon is the fact that those drugs do not profoundly disrupt the integrity of the aberrant network of multiprotein complexes on chromatin. Recent advances in drug development have led to the establishment of novel inhibitors of protein&ndash;protein interactions as well as targeted protein degraders that may provide inroads to longstanding effort to physically disrupt oncogenic multiprotein complexes on chromatin. In this review, we summarize some of the current concepts on the role epigenetic modifiers in malignant chromatin states with a specific focus on myeloid malignancies and recent advances in early-phase clinical trials

    Specificity of JAK-kinase inhibition determines impact on human and murine T-cell function

    No full text
    Clinical use of Janus-Kinase- (JAK-) inhibitors has significantly improved the therapeutic options for inflammation driven diseases. Particularly inhibitors of Janus-kinases 1 and 2 are in clinical use and (at least one of them) already approved for certain myeloproliferative neoplasms (MPNs) such as primary myelofibrosis or polycythemia vera. JAKs are essential for cytokine-induced intracellular signaling of lymphocytes and their inactivation leads to impairment of immune cell function. Reduction of T-cell reactivity became evident when treating Graft-versus-Host disease (GvHD) in vivo with the JAK1/2 inhibitor ruxolitinib. Most recent reports have highlighted that ruxolitinib constrains T-cell activation and function in MPN patients. Further clinical indicators of impaired T-cell function are severe infections emerging in JAK-inhibitor treated patients among which herpes virus reactivation, cryptococcus neoformans pneumonia, toxoplasmosis retinitis and disseminated tuberculosis are the most alarming. Ongoing pre-clinical and clinical development of more selective JAK1 or JAK2 inhibitors may offer higher efficacy, however, specificity of JAK inhibition may severely influence the emergence of severe infectious complications. We hypothesized that specificity of Janus-kinase inhibition may severely influence the observed immunosuppressive effects

    Roles of JAK2 in Aging, Inflammation, Hematopoiesis and Malignant Transformation

    No full text
    Clonal alterations in hematopoietic cells occur during aging and are often associated with the establishment of a subclinical inflammatory environment. Several age-related conditions and diseases may be initiated or promoted by these alterations. JAK2 mutations are among the most frequently mutated genes in blood cells during aging. The most common mutation within the JAK2 gene is JAK2-V617F that leads to constitutive activation of the kinase and thereby aberrant engagement of downstream signaling pathways. JAK2 mutations can act as central drivers of myeloproliferative neoplasia, a pre-leukemic and age-related malignancy. Likewise, hyperactive JAK-signaling is a hallmark of immune diseases and critically influences inflammation, coagulation and thrombosis. In this review we aim to summarize the current knowledge on JAK2 in clonal hematopoiesis during aging, the role of JAK-signaling in inflammation and lymphocyte biology and JAK2 function in age-related diseases and malignant transformation
    corecore