1,763 research outputs found

    Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases

    Get PDF
    Phytocystatins are inhibitors of cysteine-proteases from plants putatively involved in plant defence based on their capability of inhibit heterologous enzymes. We have previously characterised the whole cystatin gene family members from barley (HvCPI-1 to HvCPI-13). The aim of this study was to assess the effects of barley cystatins on two phytophagous spider mites, Tetranychus urticae and Brevipalpus chilensis. The determination of proteolytic activity profile in both mite species showed the presence of the cysteine-proteases, putative targets of cystatins, among other enzymatic activities. All barley cystatins, except HvCPI-1 and HvCPI-7, inhibited in vitro mite cathepsin L- and/or cathepsin B-like activities, HvCPI-6 being the strongest inhibitor for both mite species. Transgenic maize plants expressing HvCPI-6 protein were generated and the functional integrity of the cystatin transgene was confirmed by in vitro inhibitory effect observed against T. urticae and B. chilensis protein extracts. Feeding experiments impaired on transgenic lines performed with T. urticae impaired mite development and reproductive performance. Besides, a significant reduction of cathepsin L-like and/or cathepsin B-like activities was observed when the spider mite fed on maize plants expressing HvCPI-6 cystatin. These findings reveal the potential of barley cystatins as acaricide proteins to protect plants against two important mite pests

    Even-odd parity effects in conductance and shot noise of metal-atomic wire-metal(superconducting) junctions

    Full text link
    In this paper, we study the conductance and shot noise in transport through a multi-site system in a two terminal configuration. The dependence of the transport on the number of atoms in the atomic wire is investigated using a tight-binding Hamiltonian and the nonequilibrium Green's function method. In addition to reproducing the even-odd behavior in the transmission probability at the Fermi energy or the linear response conductance in the normal-atomic wire-normal metallic(NAN) junctions, we find the following: (i) The shot noise is larger in the even-numbered atomic wire than in the odd-numbered wire. (ii) The Andreev conductance displays the same even-odd parity effects in the normal-atomic wire-superconducting(NAS) junctions. In general, the conductance is higher in the odd-numbered atomic wire than in the even-numbered wire. When the number of sites (NN) is odd and the atomic wire is mirror symmetric with respect to the center of the atomic wire, the conductance does not depend on the details of the hopping matrices in the atomic wire, but is solely determined by the coupling strength to the two leads. When NN is even, the conductance is sensitive to the values of the hopping matrices.Comment: 12 pages, 9 figure

    A comparison of CPU and GPU implementations for the LHCb experiment run 3 trigger

    Get PDF
    The Large Hadron Collider beauty (LHCb) experiment at CERN is undergoing an upgrade in preparation for the Run 3 data collection period at the Large Hadron Collider (LHC). As part of this upgrade, the trigger is moving to a full software implementation operating at the LHC bunch crossing rate. We present an evaluation of a CPU-based and a GPU-based implementation of the first stage of the high-level trigger. After a detailed comparison, both options are found to be viable. This document summarizes the performance and implementation details of these options, the outcome of which has led to the choice of the GPU-based implementation as the baseline

    Estudis hidrològics a la Conca del Ridaura

    Get PDF

    In Vitro Antibacterial Activity of Cysteine Protease Inhibitor from Kiwifruit (Actinidia deliciosa)

    Get PDF
    The need for replacing traditional pesticides with alternative agents for the management of agricultural pathogens is rising worldwide. In this study, a cysteine proteinase inhibitor (CPI), 11 kDa in size, was purified from green kiwifruit to homogeneity. We examined the growth inhibition of three plant pathogenic Gram-negative bacterial strains by kiwi CPI and attempted to elucidate the potential mechanism of the growth inhibition. CPI influenced the growth of phytopathogenic bacteria Agrobacterium tumefaciens (76.2 % growth inhibition using 15 mu M CPI), Burkholderia cepacia (75.6 % growth inhibition) and, to a lesser extent, Erwinia carotovora (44.4 % growth inhibition) by inhibiting proteinases that are excreted by these bacteria. Identification and characterization of natural plant defense molecules is the first step toward creation of improved methods for pest control based on naturally occurring molecules

    Electron transport across a quantum wire in the presence of electron leakage to a substrate

    Full text link
    We investigate electron transport through a mono-atomic wire which is tunnel coupled to two electrodes and also to the underlying substrate. The setup is modeled by a tight-binding Hamiltonian and can be realized with a scanning tunnel microscope (STM). The transmission of the wire is obtained from the corresponding Green's function. If the wire is scanned by the contacting STM tip, the conductance as a function of the tip position exhibits oscillations which may change significantly upon increasing the number of wire atoms. Our numerical studies reveal that the conductance depends strongly on whether or not the substrate electrons are localized. As a further ubiquitous feature, we observe the formation of charge oscillations.Comment: 7 pages, 7 figure

    SEOM clinical guidelines in early stage breast cancer (2018)

    Get PDF
    Breast cancer is the most common cancer in women in our country and it is usually diagnosed in the early and potentially curable stages. Nevertheless, around 20–30% of patients will relapse despite appropriate locoregional and systemic therapies. A better knowledge of this disease is improving our ability to select the most appropriate therapy for each patient with a recent diagnosis of an early stage breast cancer, minimizing unnecessary toxicities and improving long-term efficacy

    ab initio modeling of open systems: charge transfer, electron conduction, and molecular switching of a C_{60} device

    Get PDF
    We present an {\it ab initio} analysis of electron conduction through a C60C_{60} molecular device. Charge transfer from the device electrodes to the molecular region is found to play a crucial role in aligning the lowest unoccupied molecular orbital (LUMO) of the C60C_{60} to the Fermi level of the electrodes. This alignment induces a substantial device conductance of 2.2×(2e2/h)\sim 2.2 \times (2e^2/h). A gate potential can inhibit charge transfer and introduce a conductance gap near EFE_F, changing the current-voltage characteristics from metallic to semi-conducting, thereby producing a field effect molecular current switch
    corecore