4,320 research outputs found

    Broadband Modeling of GRB 021004

    Get PDF
    We present a broadband modeling of the afterglow of GRB 021004. The optical transient of this burst has been detected very early and densely sampled in several bands. Its light curve shows significant deviations from a simple power law. We use the data from the X-ray to the II-band gathered in the first month of observations, and examine three models. Two involve variations in the energy of the shock. The first (energy injection) allows only increases to the shock energy, while the second (patchy shell) allows the energy to increase or decrease. In the final model (clumpy medium) the energy of the shock is constant while the density varies. While all three models reproduce well the optical bands, the variable density model can best account for the X-ray data, and the energy-injection model has the poorest fit. None of the models can account for the modest color variations observed during the first few days of the burst.Comment: 13 pages, 5 figures, accepted to Astrophys. J. Letters, added analysis of X-ray lightcurv

    Jets in GRBs: Tests and Predictions for the Structured Jet Model

    Full text link
    The two leading interpretations of achromatic breaks that are observed in the light curves of GRBs afterglow are (i) the manifestation of the edge of a jet, which has a roughly uniform energy profile and a sharp edge and (ii) a line of sight effect in jets with a variable energy profile. The first scenario requires the inner engine to produce a jet with a different opening angle each explosion, while the latter requires a standard engine. The physical structure of the jet is a crucial factor in understanding GRB progenitors, and therefore discriminating the two jet scenarios is particularly relevant. In the structured jet case, specific predictions can be made for the distribution of observed break angles θbreak\theta_{\rm break}, while that distribution is arbitrary in the first scenario. We derive the theoretical distribution for the structured jet model. Specifically, we predict the most common angle to be about 0.12 rad, in rough agreement with the sample. If this agreement would hold as the sample size increases, it would strengthen the case for the standard jet hypothesis. We show that a prediction of this model is that the average viewing angle is an increasing function of the survey sensitivity, and in particular that a mission like {\em Swift} will find the typical viewing angle to be about 0.3 rad. The local event rate predicted by this model is RGRB(z=0)0.5R_{\rm GRB}(z=0)\sim 0.5 Gpc3^{-3} yr1^{-1}.Comment: 14 pages, 3 figures; accepted to Ap

    UVES/VLT high resolution absorption spectroscopy of the GRB080330 afterglow: a study of the GRB host galaxy and intervening absorbers

    Full text link
    We study the Gamma Ray Burst (GRB) environment and intervening absorbers by analyzing the optical absorption features produced by gas surrounding the GRB or along its line of sight. We analyzed high resolution spectroscopic observations (R=40000, S/N=3 - 6) of the optical afterglow of GRB080330, taken with UVES at the VLT ~ 1.5 hours after the GRB trigger. The spectrum illustrates the complexity of the ISM of the GRB host galaxy at z = 1.51 which has at least four components in the main absorption system. We detect strong FeII, SiII, and NiII excited absorption lines associated with the bluemost component only. In addition to the host galaxy, at least two more absorbers lying along the line of sight to the afterglow have been detected in the redshift range 0.8 < z < 1.1, each exhibiting MgII absorption. For the bluemost component in the host galaxy, we derive information about its distance from the site of the GRB explosion. We do so by assuming that the excited absorption lines are produced by indirect UV pumping, and compare the data with a time dependent photo-excitation code. The distance of this component is found to be 280+40-50 pc, which is lower than found for other GRBs (1 - 6 kpc). We identify two additional MgII absorbers, one of them with a rest frame equivalent width larger than 1A. The distance between the GRB and the absorber measured in this paper confirms that the power of the GRB radiation can influence the conditions of the interstellar medium up to a distance of at least several hundred pc. For the intervening absorbers, we confirm the trend that on average one strong intervening system is found per afterglow, as has been noted in studies exhibiting an excess of strong MgII absorbers along GRB sightlines compared to quasars.Comment: 8 Pages, 7 ps figures, A&A in pres

    Spectral variability on primitive asteroids of the Themis and Beagle families: space weathering effects or parent body heterogeneity?

    Full text link
    Themis is an old and statistically robust asteroid family populating the outer main belt, and resulting from a catastrophic collision that took place 2.5±\pm1.0 Gyr ago. Within the old Themis family a young sub-family, Beagle, formed less than 10 Myr ago, has been identified. We present the results of a spectroscopic survey in the visible and near infrared range of 22 Themis and 8 Beagle families members. The Themis members investigated exhibit a wide range of spectral behaviors, while the younger Beagle family members look spectrally bluer with a smaller spectral slope variability. The best meteorite spectral analogues found for both Themis and Beagle families members are carbonaceous chondrites having experienced different degrees of aqueous alteration, prevalently CM2 but also CV3 and CI, and some of them are chondrite samples being unusual or heated. We extended the spectral analysis including the data available in the literature on Themis and Beagle families members, and we looked for correlations between spectral behavior and physical parameters using the albedo and size values derived from the WISE data. The analysis of this larger sample confirm the spectral diversity within the Themis family and that Beagle members tend to be bluer and to have an higher albedo. The differences between the two family may be partially explained by space weathering processes, which act on these primitive surfaces in a similar way than on S-type asteroids, i.e. producing reddening and darkening. However we see several Themis members having albedos and spectral slopes similar to the young Beagle members. Alternative scenarios are proposed including heterogeneity in the parent body having a compositional gradient with depth, and/or the survival of projectile fragments having a different composition than the parent body.Comment: Manuscript pages: 40; Figures: 15 ; Tables: 4 Icarus (2016),in pres

    Infrared and X-ray variability of the transient Anomalous X-ray Pulsar XTE J1810-197

    Full text link
    We report on observations aimed at searching for flux variations from the proposed IR counterpart of the Anomalous X-ray Pulsar XTE J1810-197. These data, obtained in March 2004 with the adaptive optics camera NAOS-CONICA at the ESO VLT, show that the candidate proposed by Israel et al. (2004) was fainter by Delta H=0.7+/-0.2 and Delta Ks=0.5+/-0.1 with respect to October 2003, confirming it as the IR counterpart of XTE J1810-197. We also report on an XMM-Newton observation carried out the day before the VLT observations. The 0.5-10 keV absorbed flux of the source was 2.2x10^-11 erg/s/cm^2, which is less by a factor of about two compared to the previous XMM-Newton observation on September 2003. Therefore, we conclude that a similar flux decrease took place in the X-ray and IR bands. We briefly discuss these results in the framework of the proposed mechanism(s) responsible for the IR variable emission of Anomalous X-ray Pulsars.Comment: accepted by A&A Letter

    X-ray Line Diagnostics of Hot Accretion Flows around Black Holes

    Get PDF
    We compute X-ray emission lines from thermal plasma in hot accretion flows. We show that line profiles are strong probes of the gas dynamics, and we present line-ratio diagnostics which are sensitive to the distribution of mass with temperature in the flow. We show how these can be used to constrain the run of density with radius, and the size of the hot region. We also present diagnostics which are primarily sensitive to the importance of recombination versus collisional ionization, and which could help discriminate ADAFs from photoionization-dominated accretion disk coronae. We apply our results to the Galactic center source Sagittarius A* and to the nucleus of M87. We find that the brightest predicted lines are within the detection capability of current XX-ray instruments.Comment: 16 pages, 1 table, 9 figures, accepted to Ap

    A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255: I. C IV absorption variability

    Get PDF
    Broad Absorption Lines indicate gas outflows with velocities from thousands km/s to about 0.2 the speed of light, which may be present in all quasars and may play a major role in the evolution of the host galaxy. The variability of absorption patterns can provide informations on changes of the density and velocity distributions of the absorbing gas and its ionization status. We collected 23 photometrical and spectro-photometrical observations at the 1.82m Telescope of the Asiago Observatory since 2003, plus other 5 spectra from the literature. We analysed the evolution in time of the equivalent width of the broad absorption feature and two narrow absorption systems, the correlation among them and with the R band magnitude. We performed a structure function analysis of the equivalent width variations. We present an unprecedented monitoring of a broad absorption line quasar based on 28 epochs in 14 years. The shape of broad absorption feature shows a relative stability, while its equivalent width slowly declines until it sharply increases during 2011. In the same time the R magnitude stays almost constant until it sharply increases during 2011. The equivalent width of the narrow absorption redwards of the systemic redshift only shows a decline. The broad absorption behaviour suggests changes of the ionisation status as the main cause of variability. We show for the first time a correlation of this variability with the R band flux. The different behaviour of the narrow absorption system might be due to recombination time delay. The structure function of the absorption variability has a slope comparable with typical optical variability of quasars. This is consistent with variations of the 200 A ionising flux originating in the inner part of the accretion disk.Comment: 10 pages, 8 figures, to appear on Astronomy & Astrophysic
    corecore