research

Jets in GRBs: Tests and Predictions for the Structured Jet Model

Abstract

The two leading interpretations of achromatic breaks that are observed in the light curves of GRBs afterglow are (i) the manifestation of the edge of a jet, which has a roughly uniform energy profile and a sharp edge and (ii) a line of sight effect in jets with a variable energy profile. The first scenario requires the inner engine to produce a jet with a different opening angle each explosion, while the latter requires a standard engine. The physical structure of the jet is a crucial factor in understanding GRB progenitors, and therefore discriminating the two jet scenarios is particularly relevant. In the structured jet case, specific predictions can be made for the distribution of observed break angles θbreak\theta_{\rm break}, while that distribution is arbitrary in the first scenario. We derive the theoretical distribution for the structured jet model. Specifically, we predict the most common angle to be about 0.12 rad, in rough agreement with the sample. If this agreement would hold as the sample size increases, it would strengthen the case for the standard jet hypothesis. We show that a prediction of this model is that the average viewing angle is an increasing function of the survey sensitivity, and in particular that a mission like {\em Swift} will find the typical viewing angle to be about 0.3 rad. The local event rate predicted by this model is RGRB(z=0)0.5R_{\rm GRB}(z=0)\sim 0.5 Gpc3^{-3} yr1^{-1}.Comment: 14 pages, 3 figures; accepted to Ap

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020