2 research outputs found

    Identifying Areas Affected By Fires In Sumatra Based On TIME Series Of Remotely Sensed Fire Hotspots And Spatial Modeling

    Get PDF
    Wildfires threaten the environment not only at local scales, but also at wider scales. Rapid monitoring system to detect active wildfires has been provided by satellite remote sensing technology, particularly through the advancement on thermal infrared sensors. However, satellite-based fire hotspots data, even at relatively high temporal resolution of less than one-day revisit period, such as time series of fire hotspots collected from TERRA and AQUA MODIS, do not tell exactly if they are fire ignitions or fire escapes, since other factors like wind, slope, and fuel biomass significantly drive the fire spread. Meanwhile, a number of biophysical fire simulation models have been developed, as tools to understand the roles of biophysical factors on the spread of wildfires. Those models explicitly incorporate effects of slope, wind direction, wind speed, and vegetative fuel on the spreading rate of surface fire from the ignition points across a fuel bed, based on either field or laboratory experiments. Nevertheless, none of those models have been implemented using real time fire data at relatively large extent areas. This study is aimed at incorporating spatially explicit time series data of weather (i.e. wind direction and wind speed), remotely sensed fuel biomass and remotely sensed fire hotspots, as well as incorporating more persistent biophysical factors (i.e. terrain), into an agent-based fire spread model, in order to identify fire ignitions within time series of remotely sensed fire hotspots

    Pemanfaatan Fusi Data Satelit Lapan-a3/ipb dan Landsat 8 untuk Monitoring Lahan Sawah

    Full text link
    Increasing of economic development is generally followed by the change of landuse from agriculture to other function. If it occurs in large frequency and amount, it will threaten national food security. Therefore, it is necessary to monitor the agricultural land, especially paddy fields regarding to changes in landuse and global climate. Utilization and development of satellite technology is necessary to provide more accurate and independent database for agricultural land monitoring, especially paddy fields. This study aims to develop a utilization model for LAPAN-IPB satellite (LISAT) and other several satellites data that have been used for paddy field monitoring. This research is conducted through 2 stages: 1) Characterization LISAT satellite data to know spectral variation of paddy field, and 2) Development method of LISAT data fusion with other satellites for paddy field mapping. Based on the research results, the characteristics Red and NIR band in LISAT data imagery have a good correlation with Red and NIR band in LANDSAT 8 OLI data imagery, especially to detect paddy field in the vegetative phase, compared to other bands. Observation and measurement of spectral values using spectroradiometer need to be conducted periodically (starting from first planting season) to know the dynamics of the change related to the growth phase of paddy in paddy field. Pre-processing of image data needs to be conducted to obtain better LISAT data characterization results. Furthermore, it is necessary to develop appropriate algorithms or methods for geometric correction as well as atmospheric correction of LISAT data
    corecore