297 research outputs found

    Curvature Dependence of Peaks in the Cosmic Microwave Background Distribution

    Get PDF
    The widely cited formula ℓ1≃200Ω0−1/2\ell_1\simeq 200 \Omega_0^{-1/2} for the multipole number of the first Doppler peak is not even a crude approximation in the case of greatest current interest, in which the cosmic mass density is less than the vacuum energy density. For instance, with ΩM\Omega_M fixed at 0.3, the position of any Doppler peak varies as Ω0−1.58\Omega_0^{-1.58} near Ω0=1\Omega_0=1.Comment: 7 pages, Late

    An Interacting Two-Fluid Scenario for Dark Energy in FRW Universe

    Full text link
    We study the evolution of the dark energy parameter within the scope of a spatially flat and isotropic Friedmann-Robertson-Walker (FRW) model filled with barotropic fluid and dark energy. To obtain the deterministic solution we choose the scale factor a(t)=teta(t) = \sqrt{t e^{t}} which yields a time dependent deceleration parameter (DP). In doing so we consider the case minimally coupled with dark energy to the perfect fluid as well as direct interaction with it.Comment: 11 pages, accepted for publication in Chinese Physics Letters. Unlike the previous version the new one contains the time depending deceleration paramete

    Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications

    Get PDF
    The ultimate fate of the universe, infinite expansion or a big crunch, can be determined by measuring the redshifts, apparent brightnesses, and intrinsic luminosities of very distant supernovae. Recent developments have provided tools that make such a program practicable: (1) Studies of relatively nearby Type Ia supernovae (SNe Ia) have shown that their intrinsic luminosities can be accurately determined; (2) New research techniques have made it possible to schedule the discovery and follow-up observations of distant supernovae, producing well over 50 very distant (z = 0.3 -- 0.7) SNe Ia to date. These distant supernovae provide a record of changes in the expansion rate over the past several billion years. By making precise measurements of supernovae at still greater distances, and thus extending this expansion history back far enough in time, we can distinguish the slowing caused by the gravitational attraction of the universe's mass density Omega_M from the effect of a possibly inflationary pressure caused by a cosmological constant Lambda. We report here the first such measurements, with our discovery of a Type Ia supernova (SN 1997ap) at z = 0.83. Measurements at the Keck II 10-m telescope make this the most distant spectroscopically confirmed supernova. Over two months of photometry of SN 1997ap with the Hubble Space Telescope and ground-based telescopes, when combined with previous measurements of nearer SNe Ia, suggests that we may live in a low mass-density universe. Further supernovae at comparable distances are currently scheduled for ground and space-based observations.Comment: 12 pages and 4 figures (figure 4 is repeated in color and black and white) Nature, scheduled for publication in the 1 January, 1998 issue. Also available at http://www-supernova.lbl.go

    The Age-Redshift Relation for Standard Cosmology

    Full text link
    We present compact, analytic expressions for the age-redshift relation τ(z)\tau(z) for standard Friedmann-Lema\^ \itre-Robertson-Walker (FLRW) cosmology. The new expressions are given in terms of incomplete Legendre elliptic integrals and evaluate much faster than by direct numerical integration.Comment: 13 pages, 3 figure

    Perturbation evolution with a non-minimally coupled scalar field

    Get PDF
    We recently proposed a simple dilaton-derived quintessence model in which the scalar field was non-minimally coupled to cold dark matter, but not to `visible' matter. Such couplings can be attributed to the dilaton in the low energy limit of string theory, beyond tree level. In this paper we discuss the implications of such a model on structure formation, looking at its impact on matter perturbations and CMB anisotropies. We find that the model only deviates from Λ\LambdaCDM and minimally coupled theories at late times, and is well fitted to current observational data. The signature left by the coupling, when it breaks degeneracy at late times, presents a valuable opportunity to constrain non-minimal couplings given the wealth of new observational data promised in the near future.Comment: Version appearing in Physical Review D. 10 pages, 9 figs. Comparison with SN1a and projected MAP results, and appendix adde

    Support of dS/CFT correspondence from space-time perturbations

    Get PDF
    We analyse the spectrum of perturbations of the de Sitter space on the one hand, while on the other hand we compute the location of the poles in the Conformal Field Theory (CFT) propagator at the border. The coincidence is striking, supporting a dS/CFT correspondence. We show that the spectrum of thermal excitations of the CFT at the past boundary I−I^{-} together with that spectrum at the future boundary I+I^{+} is contained in the quasi-normal mode spectrum of the de Sitter space in the bulk.Comment: Modified version, appearing in Phys. Rev. D66 (2002) 10401

    Cosmological model with macroscopic spin fluid

    Full text link
    We consider a Friedmann-Robertson-Walker cosmological model with some exotic perfect fluid with spin known as the Weyssenhoff fluid. The possibility that the dark energy may be described in part by the Weyssenhoff fluid is discussed. The observational constraint coming from supernovae type Ia observations is established. This result indicates that, whereas the cosmological constant is still needed to explain current observations, the model with spin fluid is admissible. For high redshifts z>1z > 1 the differences between the model with spin fluid and the cold dark matter model with a cosmological constant become detectable observationally for the flat case with Ωm,0=0.3\Omega_{\text{m},0}=0.3. From the maximum likelihood method we obtain the value of Ωs,0=0.004±0.016\Omega_{\text{s},0} = 0.004 \pm 0.016. This gives us the limit Ωs,0>−0.012\Omega_{\text{s},0} > -0.012 at the 1σ1\sigma level. While the model with ``brane effects'' is preferred by the supernovae Ia data, the model with spin fluid is statistically admissible. For comparison, the limit on the spin fluid coming from cosmic microwave background anisotropies is also obtained. The uncertainties in the location of a first peak give the interval −1.4×10−10<Ωs,0<−10−10-1.4 \times 10^{-10} < \Omega_{\text{s},0} < -10^{-10}. From big bang nucleosynthesis we obtain the strongest limit Ωs,0≳−10−20\Omega_{\text{s},0} \gtrsim -10^{-20}. The interconnection between the model considered and brane models is also pointed out.Comment: RevTeX4, 15 pages, 10 figures; some minor change

    Quantum driven Bounce of the future Universe

    Full text link
    It is demonstrated that due to back-reaction of quantum effects, expansion of the universe stops at its maximum and takes a turnaround. Later on, it contracts to a very small size in finite future time. This phenomenon is followed by a " bounce" with re-birth of an exponentially expanding non-singular universe

    Current constraints on the dark energy equation of state

    Get PDF
    We combine complementary datasets from Cosmic Microwave Background (CMB) anisotropy measurements, high redshift supernovae (SN-Ia) observations and data from local cluster abundances and galaxy clustering (LSS) to constrain the dark energy equation of state parameterized by a constant pressure-to-density ratio wQw_Q. Under the assumption of flatness, we find wQ<−0.85w_Q < -0.85 at 68% c.l., providing no significant evidence for quintessential behaviour different from that of a cosmological constant. We then generalise our result to show that the constraints placed on a constant wQw_{Q} can be safely extended to dynamical theories. We consider a variety of quintessential dynamical models based on inverse power law, exponential and oscillatory scaling potentials. We find that SN1a observations are `numbed' to dynamical shifts in the equation of state, making the prospect of reconstructing w(z)w(z), a challenging one indeed.Comment: 6 pages, 6 figures. Version accepted for publication in PR

    Deformed special relativity with an invariant minimum speed and its cosmological implications

    Full text link
    The paper aims to introduce a new symmetry principle in the space-time geometry through the elimination of the classical idea of rest and by including a universal minimum limit of speed in the subatomic world. Such a limit, unattainable by particles, represents a preferred reference frame associated with a universal background field that breaks Lorentz symmetry. Thus the structure of space-time is extended due to the presence of a vacuum energy density, which leads to a negative pressure at cosmological scales. The tiny values of the cosmological constant and the vacuum energy density shall be successfully obtained, being in good agreement with current observational results.Comment: 7 pages, 3 figures. arXiv admin note: substantial text overlap with arXiv:0705.4315, arXiv:0709.172
    • 

    corecore