2,373 research outputs found
On the nonlinear stability of symplectic integrators
The modified Hamiltonian is used to study the nonlinear stability of symplectic integrators, especially
for nonlinear oscillators. We give conditions under which an initial condition on a compact
energy surface will remain bounded for exponentially long times for sufficiently small time steps.
For example, the implicit midpoint rule achieves this for the critical energy surface of the H´enon-
Heiles system, while the leapfrog method does not. We construct explicit methods which are
nonlinearly stable for all simple mechanical systems for exponentially long times. We also address
questions of topological stability, finding conditions under which the original and modified energy
surfaces are topologically equivalent
Viscous Dark Energy Models with Variable G and Lambda
We consider a cosmological model with bulk viscosity () and variable
cosmological ) and
gravitational () constants. The model exhibits many interesting cosmological
features. Inflation proceeds du to the presence of bulk viscosity and dark
energy without requiring the equation of state . During the
inflationary era the energy density () does not remain constant, as in
the de-Sitter type. Moreover, the cosmological and gravitational constants
increase exponentially with time, whereas the energy density and viscosity
decrease exponentially with time. The rate of mass creation during inflation is
found to be very huge suggesting that all matter in the universe was created
during inflation.Comment: 6 Latex page
Phantom Energy Accretion by Stringy Charged Black Hole
We investigate the dynamical behavior of phantom energy near stringy
magnetically charged black hole. For this purpose, we derive equations of
motion for steady-state spherically symmetric flow of phantom energy onto the
stringy magnetically charged black hole. It is found that phantom energy
accreting onto black hole decreases its mass. Further, the location of critical
points of accretion is explored, which yields mass to charge ratio. This ratio
implies that accretion process cannot transform a black hole into an extremal
black hole or a naked singularity, hence cosmic censorship hypothesis remains
valid here.Comment: 7 pages, no figur
Opportunities for future supernova studies of cosmic acceleration
We investigate the potential of a future supernova dataset, as might be
obtained by the proposed SNAP satellite, to discriminate among different ``dark
energy'' theories that describe an accelerating Universe. We find that many
such models can be distinguished with a fit to the effective
pressure-to-density ratio, , of this energy. More models can be
distinguished when the effective slope, , of a changing is also fit,
but only if our knowledge of the current mass density, , is improved.
We investigate the use of ``fitting functions'' to interpret luminosity
distance data from supernova searches, and argue in favor of a particular
preferred method, which we use in our analysis.Comment: Four pages including figures. Final published version. No significant
changes from v
Geodesic Warps by Conformal Mappings
In recent years there has been considerable interest in methods for
diffeomorphic warping of images, with applications e.g.\ in medical imaging and
evolutionary biology. The original work generally cited is that of the
evolutionary biologist D'Arcy Wentworth Thompson, who demonstrated warps to
deform images of one species into another. However, unlike the deformations in
modern methods, which are drawn from the full set of diffeomorphism, he
deliberately chose lower-dimensional sets of transformations, such as planar
conformal mappings.
In this paper we study warps of such conformal mappings. The approach is to
equip the infinite dimensional manifold of conformal embeddings with a
Riemannian metric, and then use the corresponding geodesic equation in order to
obtain diffeomorphic warps. After deriving the geodesic equation, a numerical
discretisation method is developed. Several examples of geodesic warps are then
given. We also show that the equation admits totally geodesic solutions
corresponding to scaling and translation, but not to affine transformations
Search for Tracker Potentials in Quintessence Theory
We report a significant finding in Quintessence theory that the the scalar
fields with tracker potentials have a model-independent scaling behaviour in
the expanding universe. So far widely discussed exponential,power law or
hyperbolic potentials can simply mimic the tracking behaviour over a limited
range of redshift. In the small redshift range where the variation of the
tracking parameter may be taken to be negligible, the differential
equation of generic potentials leads to hyperbolic sine and hyperbolic cosine
potentials which may approximate tracker field in the present day universe. We
have plotted the variation of tracker potential and the equation of state of
the tracker field as function of the redshift for the model-independent
relation derived from tracker field theory; we have also plotted the variation
of in terms of the scalar field for the chosen hyperbolic
cosine function and have compared with the curves obtained by reconstruction of
from the real observational data from the supernovae.Comment: 11 pages, 3 figures, late
Codimension Two Compactifications and the Cosmological Constant Problem
We consider solutions of six dimensional Einstein equations with two compact
dimensions. It is shown that one can introduce 3-branes in this background in
such a way that the effective four dimensional cosmological constant is
completely independent of the brane tensions. These tensions are completely
arbitrary, without requiring any fine tuning. We must, however, fine tune bulk
parameters in order to obtain a sufficiently small value for the observable
cosmological constant. We comment in the effective four dimensional description
of this effect at energies below the compactification scale.Comment: 4 pages, rextex
Naked Singularity in a Modified Gravity Theory
The cosmological constant induced by quantum fluctuation of the graviton on a
given background is considered as a tool for building a spectrum of different
geometries. In particular, we apply the method to the Schwarzschild background
with positive and negative mass parameter. In this way, we put on the same
level of comparison the related naked singularity (-M) and the positive mass
wormhole. We discuss how to extract information in the context of a f(R)
theory. We use the Wheeler-De Witt equation as a basic equation to perform such
an analysis regarded as a Sturm-Liouville problem . The application of the same
procedure used for the ordinary theory, namely f(R)=R, reveals that to this
approximation level, it is not possible to classify the Schwarzschild and its
naked partner into a geometry spectrum.Comment: 8 Pages. Contribution given to DICE 2008. To appear in the
proceeding
Zeldovich flow on cosmic vacuum background: new exact nonlinear analytical solution
A new exact nonlinear Newtonian solution for a plane matter flow superimposed
on the isotropic Hubble expansion is reported. The dynamical effect of cosmic
vacuum is taken into account. The solution describes the evolution of nonlinear
perturbations via gravitational instability of matter and the termination of
the perturbation growth by anti-gravity of vacuum at the epoch of transition
from matter domination to vacuum domination. On this basis, an `approximate' 3D
solution is suggested as an analog of the Zeldovich ansatz.Comment: 9 pages, 1 figure
- …
