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Abstract
The modified Hamiltonian is used to study the nonlinear stability of symplectic integrators, espe-
cially for nonlinear oscillators. We give conditions under which an initial condition on a compact
energy surface will remain bounded for exponentially long times for sufficiently small time steps.
For example, the implicit midpoint rule achieves this for the critical energy surface of the Hénon-
Heiles system, while the leapfrog method does not. We construct explicit methods which are
nonlinearly stable for all simple mechanical systems for exponentially long times. We also address
questions of topological stability, finding conditions under which the original and modified energy
surfaces are topologically equivalent.

1 Introduction

Let (M, {, }) be a symplectic manifold, let H : M → R be an analytic Hamiltonian function,
let XH = {·, H} be its Hamiltonian vector field, and let ϕ be a symplectic integrator for XH

[13], i.e., a family of symplectic maps with the property that ϕ(x, τ) = x + τXH(x) + O(τ2);
here τ is the time step. The integrator can be viewed as a flow in two ways: either as the exact
time-τ flow of a nonautonomous Hamiltonian system, or as the approximate time-τ flow of an
autonomous Hamiltonian system H̃ = H +O(τ). In the second case the error in the approximation
is exponentially small (O(e−c/τ )) in the time step. The function H̃ : M × R → R is called the
modified Hamiltonian. It depends on H and on the method ϕ, and is usually found by expanding
in Taylor series in τ to any desired order [3, 9].

Questions of convergence of the Taylor series of the modified vector field and computing the
vector field to which it is asymptotic have been considered for a model nonlinear equation in [3].
Theory and applications for the Hamiltonian case can be found in [1, 8]. Since we are mainly
interested in the behaviour of the method for small time steps—in fact properties governed by the
first term in the perturbation—we here simply assume the existence of H̃.

It has long been realized ([6, 10]) that the existence of the modified Hamiltonian explains
the good energy behaviour of symplectic integrators and their long-time stability. (We write
Hc := H−1(c) = {x ∈ M : H(x) = c} for an energy surface.) For, if the initial condition x is such
that HH(x) and H̃

eH(x) are both compact, then the energy and global errors are necessarily bounded

over exponentially long time intervals. Conversely, if HH(x) is compact but H̃
eH(x) is not, then it is

entirely possible and indeed likely that the numerical orbit will not remain bounded. This is one
way to view the loss of stability when integrating linear systems (see the example below) and we
propose that it a major mechanism for loss of stability when integrating nonlinear systems as well.
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(See also [14], in which nonlinear stability in the neighbourhood of fixed points is studied.) In this
paper we explore the relationship between the topology of the true and the modified energy surfaces,
and find conditions under which compactness, and hence nonlinear stability, can be guaranteed.
(Our results must be interpreted modulo the exponentially small terms, which we shall ignore.)

Example 1 (The harmonic oscillator) The standard leapfrog method applied to the harmonic
oscillator in the plane (H = (p2 + q2)/2) gives a linear symplectic map of the plane,(

q
p

)
	→

(
1 τ/2
0 1

) (
1 0
−τ 1

) (
1 τ/2
0 1

) (
q
p

)
=: A(τ)

(
q
p

)
.

In backward error analysis, we seek a symmetric matrix B(τ) such that A(τ) = exp(τJB(τ)), so
that the map is the flow corresponding to the Hamiltonian H̃ = 1

2 (q, p)B(τ)(q, p)T . For 0 < τ < 2,
B can be determined directly to be

B =
(

θ csc θ 0
0 1

2θ cot 1
2θ

)
=

(
1 − 1

12τ2 − 1
120τ4 − . . . 0

0 1 + 1
6τ2 + 1

30τ4 + . . .

)

where
θ = 2 sin−1 τ

2

and the eigenvalues of A are e±iθ. Because B is positive, the contours of H̃ are ellipses, i.e.,
topologically equivalent to those of H. For τ ≥ 2, the eigenvalues of A(τ) are nonpositive and it
does not have a real logarithm, i.e., the map is not the flow of any linear Hamiltonian system. In
fact, the orbits now lie on (noncompact) hyperbolas, which can be realized as the flow of a hyperbolic
linear Hamiltonian system composed with the involution (q, p) 	→ (−q,−p). This change of topology
at τ = 2 corresponds to the loss of stability of the leapfrog method. Note that the Taylor series of
H̃ has radius of convergence 2.

Our work has been strongly motivated throughout by the Hénon-Heiles system, with phase
space M = R

4 and H(q1, q2, p1, p2) = T (p) + V (q), T (p) = 1
2 (p2

1 + p2
2), V (q) = 1

2 (q2
1 + q2

2) +
q2
1q2 − 1

3q3
2 . The topology of the energy surfaces can be read off the contour plot of the potential

energy V (Fig. 1): Hc has a compact component equivalent to a point for c = 0 and to S3 for
0 < c ≤ 1/6, while all energy surfaces are noncompact for c > 1/6. We were particularly drawn
to the critical energy surface H1/6, which contains three fixed points and on which it seems that
a tiny perturbation would be enough to push the orbit into the noncompact region, and hence
blow up. What happens to these energy surfaces under the perturbation due to the symplectic
integrator?

(This example makes it clear that for our purposes, different components of Hc should be
considered as different energy surfaces. The noncompact part of H0, for example, is irrelevant to
what happens near the origin. The term ‘compact’ will therefore always refer in this paper to the
relevant compact component.)

Although many types of nonlinear stability can be considered [15, 11], we concentrate here on
two, one topological and one quantitative. The topological approach was motivated by the idea
that instability may be caused by a change in the topology of the level sets of H̃; however, it turns
out that although methods can differ in this respect, some methods (including the leapfrog and
midpoint rules) show a very strong topological robustness: in some cases H̃ has the same topology
for all time steps τ . In this case large-τ instabilities must be related to the nonautonomous
part, the exponentially small terms. Encouraged by this, we consider secondly stability of specific
orbits: if an orbit of the real system is bounded, does the numerical orbit also remain bounded for
exponentially long times for a given time step τ? Here again, methods differ: leapfrog is unstable
(there are systems with bounded orbits which blow up numerically for all τ > 0); the midpoint rule
is more stable; and we also construct an unconditionally stable method (in a sense made precise
below).
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Figure 1: Hill regions (contours of potential energy) for the Hénon–Heiles system. An orbit with
energy c must stay in the region {x : V (x) ≤ c}. The 3 hyperbolic critical points of V (on
c = 1

6 ) correspond to fixed points with 2-dimensional center and 1-dimensional stable and unstable
manifolds; the latter two coincide forming separatrices (e.g., 1

2p2
2 + 1

2q2
2 − 1

3q3
2 = 1

6 , q1 = p1 = 0),
so all orbits on the compact component of the critical energy surface are in fact bounded. Orbits
starting arbitrarily close to the critical contour become unbounded in a finite time.
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2 Topological stability

Although we really want to decide when compact energy surfaces are guaranteed to remain compact
under the perturbation due to the integrator, with Morse theory it is possible to decide when
the surfaces remain topologically equivalent. If an energy surface changes topology under the
perturbation due to the integrator, then the numerical solution can’t possibly correspond to reality.
In general, when the phase space M is not compact then the perturbation to H is not bounded; but
we are only interested in controlling the compact energy surfaces, and on these, the perturbation
can be made arbitrarily small by choosing τ small enough.

Definition 1 H ∈ Ck(M,R) is a Morse function if its critical (singular) points are isolated,
nondegenerate, and if x = y are critical points, then H(x) = H(y). The Ck topology is defined
by the ball B(ε) = {H ∈ Ck(M,R) : |DαH| < ε, ∀x, ∀|α| ≤ k}. Two functions H and H̃ are
topologically equivalent if there are homeomorphisms Φ, Ψ such that Ψ ◦ H̃ = H ◦ Φ.

Definition 2 A symplectic integrator is topologically stable if H̃ is topologically equivalent to H
on any compact set. That is, the foliations of the compact set into level sets of H and H̃ are
equivalent.

It is useful to keep in mind the main result of Morse theory, that two level sets Ha and Hb of
a Morse function are topologically equivalent if there are no critical values in [a, b]. This easily
extends to show that nearby Morse functions are equivalent (a local statement, which relies merely
on transforming the functions to their normal form in each neighbourhood) which is the same as
what we are calling topological stability of an integrator. For a general treatment of the topological
stability of functions, and a proof of the following theorem, see du Plessis and Wall [5].

Theorem 1 Let H be a Ck Morse function, and let H̃ be sufficiently close to H in the Ck topology.
Then H̃ is topologically equivalent to H.

Theorem 1 If the Hamiltonian H is a Morse function on a compact set, then for sufficiently
small time steps any symplectic integrator is topologically stable.

This also extends to Hamiltonians with several critical points on the same energy surface, as
in the Hénon–Heiles system.

Proposition 1 If H is Ck on a compact set, with all critical points nondegenerate, and if for
each pair of critical points of H with equal values, the corresponding critical points of H̃ have equal
values for all sufficiently small time steps, then for all sufficiently small time steps the symplectic
integrator is topologically stable.

Proof Theorem 1 is largely local; the required homeomorphisms can be chosen in neighbourhoods
of critical and noncritical points and patched together. The crucial fact we need is that the
homeomorphism Ψ (which adjusts the values of H̃) can be chosen in a neighbourhood of a critical
value to take the simple form c 	→ c + H(x) − H̃(y) where x and y are nearby critical points of H

and H̃. Clearly, if two critical points of H with the same value require different adjustments then
we will not be able to build a single homeomorphism Ψ. The hypothesis of the proposition ensures
precisely that this does not happen and that the same map c 	→ c + H(x)− H̃(y) aligns the values
of all critical points with value H(x). Away from critical points, the result is as for Theorem 1.

•

Proposition 1 applies, for example, if the multiple critical points arise through a discrete sym-
metry (as in Hénon–Heiles) which is shared by the integrator. In fact, even this is not necessary,
as the following Proposition shows.
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Proposition 2 For any symplectic Runge-Kutta or symplectic partitioned Runge-Kutta method,
the critical points of H are also critical points of H̃, with the same critical value. For any splitting
method of any order given by the composition of the flows of XHi

where H =
∑

Hi, then any
critical points of H which are also critical points of Hi for all i are also critical points of H̃, with
the same critical value.

Proof We regard Runge-Kutta methods as a special case of partitioned Runge-Kutta methods,
for which the modified Hamiltonian H̃ is a sum of elementary Hamiltonians, each of which is a
derivative of H contracted with the q or p components of elementary differentials of XH [7]. Apart
from the zeroth order elementary differential, which is H itself, each term in H̃ contains at least
two factors Hq and/or Hp. Therefore if Hq(x0) = Hp(x0) = 0 then H(x0) = H̃(x0) and (by the
product rule) H̃q(x0) = H̃p(x0) = 0.

For splitting methods, H̃ −H is an element of L, the Lie algebra of functions generated by the
Hi under the Poisson bracket. If ∇Hi(x0) = 0 for all i, we prove by induction that elements of
Ln (the functions formed from n Poisson brackets) all have a critical point at x0, whose value for
n > 0 is zero.

For n = 0 the induction hypothesis is true by assumption. Suppose it is true for a certain value
n. Let {Hi, K}, K ∈ Ln, be a basis element of Ln+1, giving {Hi, K}(x0) = 0 immediately. On the
other hand, its Poisson bracket with any other function F at the point x0 is

{F, {Hi, K}}(x0) = −{Hi, {K, F}}(x0) − {K, {F, Hi}}(x0).

The first term on the right is zero by assumption, while the second term is zero by the induction
hypothesis. Therefore {Hi, K} has a critical point at x0. •

Note that the result is not true for all symplectic integrators, for example, splitting methods
at critical points which are not critical points of all the Hi. Such methods usually move the fixed
points. In general there may also be spurious critical points of H̃. This suggests studying the
relationship between fixed points of the method and critical points of H̃.

On M = R
n with H unbounded, H̃ may have more critical points than H; for example,

‘spurious’ critical points could be born at infinity at τ = 0 and move inwards as τ increases. For
large enough τ they may collide with the non-spurious critical points, resulting in a bifurcation
and change in topology of the modified energy surfaces.

However, we believe that for some methods this does not happen and is ruled out as a source
of instability. For, if x∗ is a critical point of H̃, then

ϕ(x∗) − exp(τXτ )(x∗) = ϕ(x∗) − x∗ = O(e−c/τ ).

Under mild nondegeneracy conditions, either x∗ is a fixed point of the method or there is a fixed
point very (exponentially) close to x∗. In that case a method with no spurious fixed points has no
spurious critical points of H̃.

Now consider the leapfrog and midpoint methods. They do not have spurious fixed points [15],
so H̃ does not (typically) have spurious critical points. In addition, the true critical points do not
move or change their value. Thus, H̃ is then topologically equivalent to H on all (compact subsets
of) phase space for sufficiently small τ > 0. This gives these methods a very strong topological
stability and suggests that one possible instability mechanism—a change in the topology of H̃ due
to nonlinear effects—is not in fact significant. The only way the topology can change at larger
time steps is by individual critical points changing their type. But near critical points, stability
can be determined directly from linear stability theory.

For example, applying leapfrog to the Hénon-Heiles system, the fixed point at the origin is
stable for τ < 2, and the type of the fixed point at p = (0, 0), q = (0, 1) does not change for
τ < 2/

√
3 ≈ 1.155. For the midpoint rule, these fixed points have the same type for all τ > 0.

In practice, one finds that both the midpoint rule and leapfrog lose stability at τ ≈ 0.9. This is
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likely to be due to nonautonomous effects—the ‘exponentially small terms’ are now large and any
analysis involving H̃ is irrelevant.

3 Nonlinear stability

In this section, we assume that the critical points of H are nondegenerate.
In spite of topological stability, if the initial condition x is such that H(x) is close to a critical

value, then the energy and modified energy surfaces through x may be inequivalent. Proposition
1 only guarantees that there is a nearby initial condition lying on an equivalent modified energy
surface.

One common scenario for numerical integration is to integrate a family of initial conditions on
a particular energy surface. This would be done when drawing Poincaré sections, for example.
Therefore, we ask when all initial conditions on an energy surface are stable (i.e., bounded) during
the numerical integration. This will be true (again, modulo exponentially small terms) when all
the sets H̃

eH(x) are compact for all x ∈ Hc. This implies that when H and the integrator are
analytic, the relevant orbits are bounded over exponentially long time intervals.

Definition 3 A symplectic integrator is (nonlinearly) stable if all points lying on a compact level
set of H also lie on a compact level set of H̃.

Theorem 1 guarantees nonlinear stability for sufficiently small time steps in the neighbourhood
of a compact energy surface Hc if c is not a critical value. We therefore turn to the delicate case
in which Hc divides compact and noncompact level sets. This turns out to depend essentially on
the sign of the perturbation to the Hamiltonian. The following Proposition reduces the stability
criterion to a simple calculation. First note that noncritical level sets carry a canonical volume
form (say α, defined by α ∧ dH = ωn, where ω is the symplectic form and dimM = 2n) and
hence are orientable. Their compact components have an inside and an outside. Therefore, the
critical levels sets are sandwiched by orientable level sets and are also orientable. Because of the
application to nonlinear oscillators, we shall study H in a neighbourhood of a minimum.

To be specific, we consider the case when the integrator is self-adjoint so that H̃ contains only
even powers of τ .

Proposition 3 Let Hd be compact for d ≤ c and noncompact for d > c, and let H̃ = H +τ2H(2) +
O(τ4).

(i) If the critical points of H on Hc are also critical points of H̃ with the same value, then all
initial conditions on Hc lie on compact level sets of H̃ for sufficiently small time steps τ if
dH̃/dτ ≤ 0 for sufficiently small τ for all x ∈ Hc. This is true if H(2)(x) < 0 for all x in Hc

which are not critical points, and false if there is an x ∈ Hc with H(2)(x) > 0.

(ii) If, on the other hand, the critical points of H̃ can move and change their values, then all
initial conditions on Hc lie on compact level sets of H̃ for sufficiently small time steps τ if
(a) all critical points on Hc move outside Hc for τ > 0 and (b) the maximum of H(2) on Hc

is attained only at the critical points.

Proof (i) By Proposition 1, the compact level sets of H̃ are equivalent to those of H, and the
only question is whether the unperturbed level set Hc intersects only compact level sets of H̃.
This is true iff Hc ⊂ {x : H̃(x) ≤ c}, that is, iff the critical level set H̃c lies nowhere inside Hc.
Since H and H̃ are increasing in the outward direction, this is true iff H̃|Hc ≤ c, which is true for
sufficiently small time steps iff ∂ eH

∂τ |Hc ≤ 0, which is true if H(2)|Hc ≤ 0 and equals zero only at the
critical points.
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(ii) Now suppose the critical points move and change their values. Then H̃ has several critical
sets close to Hc. If any of the critical points lie inside Hc, then a noncompact level set of H̃ will
intersect Hc, indicating instability; hence (a) is necessary. Let the innermost of these critical sets
contain x̃(τ), the critical point of H̃ with the least critical value. Repeating the above calculation,
we need

H̃|Hc
≤ H̃(x̃)

⇔ ∂H̃

∂τ

∣∣∣∣∣
Hc

≤ dH̃(x̃, τ)
dτ

=
〈
∇H̃(x̃, τ),

dx̃

dτ

〉
+

∂H̃

∂τ
(x̃, τ)

=
∂H̃

∂τ
(x, τ)

(the implications being true for all sufficiently small time steps). This gives the criterion that we
have stability if H(2) attains its maximum value on Hc at the critical points, condition (b). •

(If H(2)|Hc
had any extra maxima with the same value, higher order terms would need to be

examined as well.) Note that if the maximum values of H̃ are distinct, then condition (b) cannot
hold, so for this test to apply it is necessary for all critical values of H̃ (corresponding to critical
points on Hc) to be equal.

3.1 Stability of leapfrog and midpoint methods

It is impossible to ensure stability for completely general Hamiltonians. Surprisingly, however,
it is possible to ensure stability for simple mechanical systems, even with an explicit method.
Determining stability in any particular case is reduced by Proposition 3 to a calculus exercise.

We now specialize to the case of simple mechanical systems, i.e. H = T (q, p) + V (q) with
T = 1

2M(q)(p, p) and M(q) positive definite. Then for any second order symplectic Runge-Kutta
or splitting method,

H(2) = α{T, {T, V }} + β{V, {V, T}} = αM̃(q)(p, p) + βM(V ′, V ′)

for certain coefficients α and β, where the modified metric M̃ is given by M̃ = MT V ′′M+ 1
2M ′MV .

Denoting the method exp( τ
2XT ) exp(τXV ) exp( τ

2XT ) by ‘ABA leapfrog’, we get the following
values for α and β:

ABA leapfrog: α = − 1
24 , β = 1

12

BAB leapfrog: α = 1
12 , β = − 1

24

Midpoint rule: α = − 1
24 , β = − 1

24 .

Stability depends only on the angle of (α, β) ∈ R2. Note that M(V ′, V ′) ≥ 0, so the second term
in H(2) is positive (causing instability) for β > 0 and negative (tending to help stability) for β < 0.
We see immediately that the midpoint rule is “more nonlinearly stable” than the ABA leapfrog
method. However, the most stable second order method in this sense would have α = 0 and β < 0:
we construct a composition method with this property below.

We need to evaluate H(2) on the energy surface Hc. We will consider Hamiltonians with
M = I (i.e. T = 1

2p2), various potentials V (q), and various methods. We want to maximize
H(2) = αV ′′(p, p) + β|V ′|2 subject to 1

2p2 + V (q) = c, where c is a critical value of H. For each q
in the Hill region

Rc = {q : V (q) ≤ c},
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Figure 2: The critical energy surface H0 for a cubic oscillator H = 1
2p2 − 1

2q2 + q3 is shown,
together with its modification under two integrators at time step τ = 1. It moves out under the
midpoint rule, which is therefore stable, but in and out under the ABA leapfrog method: some
initial conditions on H0 lie outside the modified surface and hence can escape to infinity.

p lies on a sphere, and the first term in H(2) is maximized when p is an eigenvector corresponding
to the maximum (for α > 0) or minimum (for α < 0) eigenvalue λ(V ′′(q)) of the symmetric matrix
V ′′(q). That is,

max H(2)|Hc
= max

q∈Rc

∆(q),

∆(q) := 2α(c − V (q))λ(V ′′(q)) + β|V ′(q)|2.

Example 1. One degree of freedom.

For systems with one degree of freedom, V ′′(q) is a 1 × 1 matrix, so λ(V ′′(q)) = V ′′(q). Without
loss of generality we can take c = 0 and V (q) ∼ −1

2q2 near a hyperbolic critical point. Then
∆ ∼ (β − α)q2, so β − α ≤ 0 is necessary for stability. Thus the ABA leapfrog method is always
unstable, while the midpoint rule (with α = β) just passes this test (although it is unstable for the
degenerate potentials V (q) ∼ −qa, a > 2, which require βa ≤ 2α(a − 1)).

Any single well potential will have an interior minimum of V , at which ∆ = −2αV (q)V ′′(q),
so sgn(∆) = sgn(α), so α ≤ 0 is necessary for stability.

For cubic potentials, we can take V (q) = − 1
2q2 + q3 and study ∆ on the Hill region [0, 1

2 ]. We
have

∆ = −q2((12α − 9β)q2 + (6β − 8α)q + α − β)

which one can show is negative on the Hill region iff β − α ≤ 0. Thus, the midpoint rule is stable
for all cubic potentials. Figure 2 shows the original and perturbed critical energy surfaces in this
case.

The midpoint rule is also stable for all quartics with no cubic term, but it is not stable for all
quartics. It fails for the right-hand well of the double-well potential V (q) = − 1

2q2 − q3 + q4. To see
this, note that for the midpoint rule, ∆′ = 1

12V V ′′′, so there is a chance of instability if V ′′′(q) = 0
for some q in the Hill region. In this example this occurs at q = 1

4 , and here ∆(1
4 ) = 5

12288 > 0
(just!).
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Figure 3: Stability region for ABA leapfrog applied to the Hénon-Heiles system. Initial conditions
with q in the region shown and energy H = 1

6 will be bounded for exponentially long time intervals.

The midpoint rule (and any method with α < 0) is unstable if there are extra hyperbolic critical
points of V inside the Hill region. For then ∆ = −2αV λ(V ′′) > 0. It is interesting, though, that
the midpoint rule is as stable as it is.

The condition β ≤ 2α is also useful for stability. Note that

∆
V 2

= −2α(ln |V |)′′ + (β − 2α)(ln |V |)′)2

so that if β ≤ 2α and α ≤ 0, the method is stable for all potentials for which ln |V | is convex, such
as the pendulum V (q) = 1 − cos q and the quartic potential V = − 1

2q2 − q3 + q4 for which the
midpoint rule failed.

Example 2. The two degree-of-freedom Hénon–Heiles system.

Similar calculations can be done in more dimensions. For the Hénon-Heiles potential V (q1, q2) =
1
2 (q2

1 + q2
2) + q2

1q2 − 1
3q3

2 and the eigenvalues of V ′′ are 1 ± 2
√

q2
1 + q2

2 . For the midpoint rule
(α = β = − 1

24 ) for the critical value c = 1
6 this gives

24∆ = −(1 − 2
√

q2
1 + q2

2)(
1
3
− 2V ) − |V ′|2

which has exactly 7 critical points: 4 at the critical points of V (maxima with value 0 at (q1, q2) =
(0, 1) and its symmetric images, and a minimum with value − 1

3 at (0, 0)) and three with value
≈ −0.2270 at (q1, q2) = (0, (1−

√
57)/28) and its symmetric images. On the boundary q2 = − 1

2 we
have 24∆ = −(q2

1 − 3
4 )2 ≤ 0. Therefore (using the threefold symmetry), ∆ ≤ 0 on the unperturbed

Hill region and the midpoint rule is stable. The ABA leapfrog method is stable for small |q| (the
precise region is shown in Figure 3) and unstable for large |q|, while the BAB leapfrog method is
stable only for large enough |q| (Figure 4). This prediction is confirmed numerically in Figure 5:
initial conditions on the critical energy set H1/6 with p = 0 blow up even for small time steps,
while initial conditions with q = 0 (inside the safe region of Figure 3) are bounded even for quite
large time steps.

If a different splitting is used, leapfrog can be stable. Consider the popular linear plus nonlinear
splitting, A = (|q|2 + |p|2)/2, B = q2

1q2 − 1
3q3

2 . Then composition methods will in general move the
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fixed points, and we have to check that they move outwards. By symmetry, they will all retain the
same critical value; one can calculate from H(2) that the critical point initially at p = 0, q = (0, 1)
moves to p = 0, q = (0, 1 + (3β + 4α)τ2 + O(τ4)), i.e., it moves outwards for 3β + 4α > 0. Both
ABA and BAB leapfrog satisfy this. Secondly, one has to check that H(2) is maximized at the
critical points. This also turns out to be the case for both ABA and BAB leapfrog. Therefore,
both these methods are stable. In a sense, allowing the critical points to move out has actually
made it easier for the entire level set to move out, ensuring stability.

3.2 Visualizing the modified energy surfaces

For simple mechanical systems the modified Hill region (the projection of an energy surface to the
configuration (q) space) gives some idea of the perturbation to the energy surfaces. Considering
only the first term H(2) we have

c = H + τ2H(2)

= T (p) + V (q) + τ2
(
αM̃(p, p) + βM(V ′, V ′)

)
=

1
2
(M + 2ατ2M̃)(p, p) + V + βτ2M(V ′, V ′)

.

For sufficiently small τ , the modified metric M + 2ατ2M̃ is still positive definite (provided M̃ is
bounded) so the modified Hill region is given by

{q : V + βτ2M(V ′, V ′) ≤ c}

which is easy to draw. This immediately indicates whether the modified energy surface moves in
or out as τ increases from zero, at least at p = 0. For p = 0 the modified energy surface consists
of an ellipsoid attached to each point q in the Hill region, instead of a sphere.

Figure 6 shows the path in configuration space for the ABA leapfrog method with initial
condition q = (0, 0), p = (1/

√
6, 1/

√
6), at the center of the stable region shown in Figure 3.

The time step is τ = 1. The modified critical Hill region lies inside the unmodified Hill region,
so that initial conditions lying between them are unstable. However, for this initial condition,
H̃ = 1

6 (1 + 2ατ2) < 1
6 , so the computation is stable, and remains within the modified Hill region

shown.

3.3 Designing unconditionally stable methods

A method with α = 0 and β < 0 will be stable for all potentials V (q) (with the proviso that the
higher-order terms in H̃ become relevant at critical points of V in the interior of the Hill region).
A method with α ≤ 0 and β ≤ 2α will be stable for many single-well potentials. It is possible to
design composition methods with these properties.

A first attempt, increasing the total number of A and B stages from 3 to 5, ends in a failure
reminiscent of an order barrier. Letting XH = A + B, we consider the method

eaτAe
1
2 τBe(1−2a)τAe

1
2 τBeaτA (1)

and compute using the BCH formula that

α =
1
12

(1 − 6a + 6a2), β =
1
24

(6a − 1).

So β < 0 requires a < 1
6 , but α = 0 only at a = 1

2 ±
√

3
6 . Eliminating a, we see that only methods

with α = 8β2 − 4
3β + 1

72 are possible. Swapping the positions of A and B in (1) gives methods
with β = 8α2 − 4

3α + 1
72 . These two curves are shown in Figure 7—they do not come anywhere

near the desired stability region.
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Figure 6: A stable orbit for the leapfrog method.

Including a corrector [2] of the form exp(τ2γ[A, B]) shifts the parameters from (α, β) to (α +
γ, β−γ). Choosing γ = −α we get β′ = β+α. So a method can be corrected to be unconditionally
stable if β + α < 0. The midpoint rule satisfies this (see Figure 7), but none of the 5-stage
composition methods do.

Therefore, more stages are required, so we try 7 (4 As and 3 Bs):

eaτAebτBe(1/2−a)τAe(1−2b)τBe(1/2−a)τAebτBeaτA. (2)

We find
α = − 1

24
+ b(

1
4
− a + a2), β =

1
12

+
1
2
b(1 − 2a)(b − 1)

so that α = 0 gives b = 1
6 (2a − 1)−2 and

β =
48a3 − 48a2 − 12a − 1

72(2a − 1)3
.

The root a = a∗ := 1
2 (2 − 21/3)−1 ≈ 0.675 is the familiar fourth-order method, and the range

a ∈ ( 1
2 , a∗) gives stable methods. One convenient solution is

e
2
3 τAe

3
2 τBe−

1
6 τAe−2τBe−

1
6 τAe

3
2 τBe

2
3 τA,

for which β = − 1
24 , a respectable value compared with leapfrog. No doubt more efficient stable

methods with more stages also exist.
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3.4 Higher order methods

The methods of this paper can be used to check the stability of any method, or to determine
the coefficients that the terms in H̃ would need to be stable for a given potential. Unconditional
stability may even be possible. At fourth order, the terms in H(4) for H = 1

2p2 + V (q) are

V ′′′′(p, p, p, p), V ′′′(V ′, p, p), V ′′(V ′, V ′), and |V ′′(p)|2.

Amongst these, the sign of only the last can be controlled for any reasonably general class of
potentials. This suggests that the stability situation may be analogous to the one at second order
but slightly harder to ensure. This pattern persists at higher order: at sixth order, amongst the
6 terms in H(6) we find the two positive terms |V ′′(V ′)|2 and |V ′′′(p, p)|2. We have not yet done
further calculations for these cases, however.
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