352 research outputs found

    Strong lensing by fermionic dark matter in galaxies

    Full text link
    It has been shown that a self-gravitating system of massive keV fermions in thermodynamic equilibrium correctly describes the dark matter (DM) distribution in galactic halos and predicts a denser quantum core towards the center of the configuration. Such a quantum core, for a fermion mass in the range of 5050 keV mc2345\lesssim m c^2 \lesssim 345 keV, can be an alternative interpretation of the central compact object in Sgr A*. We present in this work the gravitational lensing properties of this novel DM model in Milky Way-like spiral galaxies. We describe the lensing effects of the pure DM component both on halo scales, where we compare them to the effects of the Navarro-Frenk-White and the Non-Singular Isothermal Sphere DM models, and near the galaxy center, where we compare them with the effects of a Schwarzschild BH. For the particle mass leading to the most compact DM core, mc2102m c^2\approx 10^{2} keV, we draw the following conclusions. At distances r20r\gtrsim 20 pc from the center of the lens the effect of the central object on the lensing properties is negligible. However, we show that measurements of the deflection angle produced by the DM distribution in the outer region at a few kpc, together with rotation curve data, could help to discriminate between different DM models. We show that at distances 104\sim 10^{-4} pc strong lensing effects, such as multiple images and Einstein rings, may occur. Large differences in the deflection angle produced by a DM central core and a central BH appear at distances r106r\lesssim 10^{-6} pc; in this regime the weak-field formalism is no longer applicable and the exact general-relativistic formula has to be used. We find that quantum DM cores do not show a photon sphere what implies that they do not cast a shadow. Similar conclusions apply to the other DM distributions for other fermion masses in the above specified range and for other galaxy types.Comment: 10 pages, 8 figures. v2: Version published in PR

    Gravitational lensing in spherically symmetric static spacetimes with centrifugal force reversal

    Get PDF
    In Schwarzschild spacetime the value r=3mr=3m of the radius coordinate is characterized by three different properties: (a) there is a ``light sphere'', (b) there is ``centrifugal force reversal'', (c) it is the upper limiting radius for a non-transparent Schwarschild source to act as a gravitational lens that produces infinitely many images. In this paper we prove a theorem to the effect that these three properties are intimately related in {\em any} spherically symmetric static spacetime. We illustrate the general results with some examples including black-hole spacetimes and Morris-Thorne wormholes.Comment: 18 pages, 3 eps-figure

    A Characterisation of the Weylian Structure of Space-Time by Means of Low Velocity Tests

    Get PDF
    The compatibility axiom in Ehlers, Pirani and Schild's (EPS) constructive axiomatics of the space-time geometry that uses light rays and freely falling particles with high velocity, is replaced by several constructions with low velocity particles only. For that purpose we describe in a space-time with a conformal structure and an arbitrary path structure the radial acceleration, a Coriolis acceleration and the zig-zag construction. Each of these quantities give effects whose requirement to vanish can be taken as alternative version of the compatibility axiom of EPS. The procedural advantage lies in the fact, that one can make null-experiments and that one only needs low velocity particles to test the compatibility axiom. We show in addition that Perlick's standard clock can exist in a Weyl space only.Comment: to appear in Gen.Rel.Gra

    A comparison of approximate gravitational lens equations and a proposal for an improved new one

    Full text link
    Keeping the exact general relativistic treatment of light bending as a reference, we compare the accuracy of commonly used approximate lens equations. We conclude that the best approximate lens equation is the Ohanian lens equation, for which we present a new expression in terms of distances between observer, lens and source planes. We also examine a realistic gravitational lensing case, showing that the precision of the Ohanian lens equation might be required for a reliable treatment of gravitational lensing and a correct extraction of the full information about gravitational physics.Comment: 11 pages, 6 figures, to appear on Physical Review

    A Morse-theoretical analysis of gravitational lensing by a Kerr-Newman black hole

    Full text link
    Consider, in the domain of outer communication of a Kerr-Newman black hole, a point (observation event) and a timelike curve (worldline of light source). Assume that the worldline of the source (i) has no past end-point, (ii) does not intersect the caustic of the past light-cone of the observation event, and (iii) goes neither to the horizon nor to infinity in the past. We prove that then for infinitely many positive integers k there is a past-pointing lightlike geodesic of (Morse) index k from the observation event to the worldline of the source, hence an observer at the observation event sees infinitely many images of the source. Moreover, we demonstrate that all lightlike geodesics from an event to a timelike curve in the domain of outer communication are confined to a certain spherical shell. Our characterization of this spherical shell shows that in the Kerr-Newman spacetime the occurrence of infinitely many images is intimately related to the occurrence of centrifugal-plus-Coriolis force reversal.Comment: 14 pages, 2 figures; REVTEX; submitted to J. Math. Phy

    Possible potentials responsible for stable circular relativistic orbits

    Full text link
    Bertrand's theorem in classical mechanics of the central force fields attracts us because of its predictive power. It categorically proves that there can only be two types of forces which can produce stable, circular orbits. In the present article an attempt has been made to generalize Bertrand's theorem to the central force problem of relativistic systems. The stability criterion for potentials which can produce stable, circular orbits in the relativistic central force problem has been deduced and a general solution of it is presented in the article. It is seen that the inverse square law passes the relativistic test but the kind of force required for simple harmonic motion does not. Special relativistic effects do not allow stable, circular orbits in presence of a force which is proportional to the negative of the displacement of the particle from the potential center.Comment: 11 pages, Latex fil

    On the energy functional on Finsler manifolds and applications to stationary spacetimes

    Full text link
    In this paper we first study some global properties of the energy functional on a non-reversible Finsler manifold. In particular we present a fully detailed proof of the Palais--Smale condition under the completeness of the Finsler metric. Moreover we define a Finsler metric of Randers type, which we call Fermat metric, associated to a conformally standard stationary spacetime. We shall study the influence of the Fermat metric on the causal properties of the spacetime, mainly the global hyperbolicity. Moreover we study the relations between the energy functional of the Fermat metric and the Fermat principle for the light rays in the spacetime. This allows us to obtain existence and multiplicity results for light rays, using the Finsler theory. Finally the case of timelike geodesics with fixed energy is considered.Comment: 23 pages, AMSLaTeX. v4 matches the published versio

    New superintegrable models with position-dependent mass from Bertrand's Theorem on curved spaces

    Full text link
    A generalized version of Bertrand's theorem on spherically symmetric curved spaces is presented. This result is based on the classification of (3+1)-dimensional (Lorentzian) Bertrand spacetimes, that gives rise to two families of Hamiltonian systems defined on certain 3-dimensional (Riemannian) spaces. These two systems are shown to be either the Kepler or the oscillator potentials on the corresponding Bertrand spaces, and both of them are maximally superintegrable. Afterwards, the relationship between such Bertrand Hamiltonians and position-dependent mass systems is explicitly established. These results are illustrated through the example of a superintegrable (nonlinear) oscillator on a Bertrand-Darboux space, whose quantization and physical features are also briefly addressed.Comment: 13 pages; based in the contribution to the 28th International Colloquium on Group Theoretical Methods in Physics, Northumbria University (U.K.), 26-30th July 201

    On the exact gravitational lens equation in spherically symmetric and static spacetimes

    Full text link
    Lensing in a spherically symmetric and static spacetime is considered, based on the lightlike geodesic equation without approximations. After fixing two radius values r_O and r_S, lensing for an observation event somewhere at r_O and static light sources distributed at r_S is coded in a lens equation that is explicitly given in terms of integrals over the metric coefficients. The lens equation relates two angle variables and can be easily plotted if the metric coefficients have been specified; this allows to visualize in a convenient way all relevant lensing properties, giving image positions, apparent brightnesses, image distortions, etc. Two examples are treated: Lensing by a Barriola-Vilenkin monopole and lensing by an Ellis wormhole.Comment: REVTEX, 11 pages, 12 eps-figures, figures partly improved, minor revision

    Strong lensing by fermionic dark matter in galaxies

    Get PDF
    It has been shown that a self-gravitating system of massive keV fermions in thermodynamic equilibrium correctly describes the dark matter (DM) distribution in galactic halos (from dwarf to spiral and elliptical galaxies) and that, at the same time, it predicts a denser quantum core towards the center of the configuration. Such a quantum core, for a fermion mass in the range of 50 keV ≲m c2≲345 keV , can be an alternative interpretation of the central compact object in Sgr A*, traditionally assumed to be a black hole (BH). We present in this work the gravitational lensing properties of this novel DM configuration in nearby Milky-Way-like spiral galaxies. We describe the lensing effects of the pure DM component both on halo scales, where we compare them to the effects of the Navarro-Frenk-White and the nonsingular isothermal sphere DM models, and near the galaxy center, where we compare them with the effects of a Schwarzschild BH. For the particle mass leading to the most compact DM core, m c2≈1 02 keV , we draw the following conclusions. At distances r ≳20 pc from the center of the lens the effect of the central object on the lensing properties is negligible. However, we show that measurements of the deflection angle produced by the DM distribution in the outer region at a few kpc, together with rotation curve data, could help to discriminate between different DM models. In the inner regions 1 0-6≲r ≲20 pc , the lensing effects of a DM quantum core alternative to the BH scenario becomes a theme of an analysis of unprecedented precision which is challenging for current technological developments. We show that at distances ?1 0-4 pc strong lensing effects, such as multiple images and Einstein rings, may occur. Large differences in the deflection angle produced by a DM central core and a central BH appear at distances r ≲1 0-6 pc ; in this regime the weak-field formalism is no longer applicable and the exact general-relativistic formula has to be used for the deflection angle which may become bigger than 2 π . An important difference in comparison to BHs is in the fact that quantum DM cores do not show a photon sphere; this implies that they do not cast a shadow (if they are transparent). Similar conclusions apply to the other DM distributions for other fermion masses in the above-specified range and for other galaxy types.Facultad de Ciencias Astronómicas y Geofísica
    corecore