13 research outputs found

    Convergent Validity of the Short Recovery and Stress Scale in Collegiate Weightlifters

    Get PDF
    International Journal of Exercise Science 15(6): 1457-1471, 2022. The purpose of this study was to determine whether changes in collegiate weightlifters’ external training load, biochemical markers, and jumping performance correlate to changes in items of the Short Recovery and Stress Scale (SRSS) throughout four microcycles. Twelve well-trained weightlifters (8 males, 4 females; age 24.30 ± 4.36 yr; height 170.28 ± 7.09 cm; body mass 81.73 ± 17.00 kg) with at least one year of competition experience participated in the study. Measurements included hydration, SRSS, biochemical analysis of blood (cortisol [C], creatine kinase [CK]), and unloaded and loaded squat jumps (SJ), and volume-load displacement. Pearson correlation coefficients were calculated between the changes in SRSS items and all other variables. The alpha criterion for all analyses was set at p ≀ 0.05. Negative relationships were observed between changes in SRSS recovery items and C (r = -0.608 to -0.723), and unloaded and loaded SJ height and peak power (r = -0.587 to -0.636). Positive relationships were observed between changes in several SRSS stress items and C (r = 0.609 to 0.723), CK (r = 0.922), and unloaded and loaded SJ height and peak power (r = 0.583 to 0.839). Relationships between changes in some SRSS items and cortisol agree with previous findings highlighting C as an indicator of training stress. Nonetheless, the non-significant relationships between changes in SRSS items, training volume and biochemical markers disagree with previous findings. This may partly be explained by the smaller undulations in training volume in the current study, which were characteristic of typical training. Further, relationships between changes in some SRSS items and jumping performance were opposite of what was expected indicating athletes’ perception of their stress and recovery state does not always correspond with their ability to perform

    Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes

    Get PDF
    Background The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes. Aim To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave. Methods A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records. Findings In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home. Conclusion The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant

    Weightlifting Team Perception of the East Tennessee State University Athlete Monitoring Program

    No full text
    The overall purpose of this dissertation was to assess the Weightlifting team’s athlete and coach perception of the athlete monitoring program at East Tennessee State University over the course of a mesocycle. This was accomplished by conducting a single investigation using eleven well-trained weightlifters and three coaches. Five data collections were carried out over the course of a single mesocycle leading up to a competition. No statistically significant perceptual changes throughout the training program were observed among any questions for weightlifters or coaches. Interpretation of the means for each question indicate that both weightlifters’ and coaches’ perceptions of the SPEC program’s ability to influence the components assessed by the questionnaire were positive ranging from no different to much better. Participants agree that they do understand why they take part in both SPEC testing and monitoring, and coaches indicated that data from testing and monitoring is used to develop and alter their athletes training. Results further indicate regular communication between coaches and their athletes about the purpose of their programming

    Initial Reaction Probability and Dynamics of Ozone Collisions with a Vinyl-Terminated Self-Assembled Monolayer

    No full text
    The gas-surface reaction dynamics of ozone with a model unsaturated organic surface have been explored through a series of molecular beam scattering experiments. Well-characterized organic surfaces were reproducibly created by adsorption of C=C-terminated long-chain alkanethiols onto gold, while the incident molecular beams were created by supersonic expansion of ozone seeded in an inert carrier gas to afford control over collision energy. Time-of-flight distributions for the scattered molecules showed near complete thermal accommodation of ozone for incident energies as high as 70 kJ/mol. Reflection-absorption infrared spectroscopy, performed in situ with ozone exposure, revealed that oxidation of the double bond depends significantly on the translational energy of O 3. For energies near room temperature, 5 kJ/mol, the initial reaction probability (Îł 0) for the formation of the primary ozonide was determined to be Îł 0 = 1.1 × 10 -5. As translational energy increased to 20 kJ/mol, the reaction probability decreased. This behavior, along with a strong inverse relationship between Îł 0 and surface temperature, demonstrates that the room-temperature reaction follows the Langmuir-Hinshelwood mechanism, requiring accommodation prior to reaction under nearly all atmospherically relevant conditions. However, measurements show that the dynamics transition to a direct reaction (analogous to the Eley-Rideal mechanism) for elevated translational energies. © 2011 American Chemical Society

    Skill Flow: A Fundamental Reconsideration of Skilled-Worker Mobility and Development

    No full text

    Genomics for Fungi

    No full text

    Genomic epidemiology of SARS-CoV-2 in a university outbreak setting and implications for public health planning

    Get PDF
    AbstractWhole genome sequencing of SARS-CoV-2 has occurred at an unprecedented scale, and can be exploited for characterising outbreak risks at the fine-scale needed to inform control strategies. One setting at continued risk of COVID-19 outbreaks are higher education institutions, associated with student movements at the start of term, close living conditions within residential halls, and high social contact rates. Here we analysed SARS-CoV-2 whole genome sequences in combination with epidemiological data to investigate a large cluster of student cases associated with University of Glasgow accommodation in autumn 2020, Scotland. We identified 519 student cases of SARS-CoV-2 infection associated with this large cluster through contact tracing data, with 30% sequencing coverage for further analysis. We estimated at least 11 independent introductions of SARS-CoV-2 into the student population, with four comprising the majority of detected cases and consistent with separate outbreaks. These four outbreaks were curtailed within a week following implementation of control measures. The impact of student infections on the local community was short-term despite an underlying increase in community infections. Our study highlights the need for context-specific information in the formation of public health policy for higher educational settings.</jats:p
    corecore