8,353 research outputs found

    Summary of the CMS Discovery Potential for the MSSM SUSY Higgses

    Full text link
    This work summarises the present understanding of the expected MSSM SUSY Higgs reach for CMS. Many of the studies presented here result from detailed detector simulations incorporating final CMS detector design and response. With 30 fb-1 the h -> gamma,gamma and h -> bb channels allow to cover most of the MSSM parameter space. For the massive A,H,H+ MSSM Higgs states the channels A,H -> tau,tau and H+ -> tau,nu turn out to be the most profitable ones in terms of mass reach and parameter space coverage. Consequently CMS has made a big effort to trigger efficiently on taus. Provided neutralinos and sleptons are not too heavy, there is an interesting complementarity in the reaches for A,H -> tau,tau and A,H -> chi,chi.Comment: 19 pages, 27 figure

    Mechanical Behaviour of the Short Models of LHC Main Dipole Magnets

    Get PDF
    A series of single and twin aperture 1 metre magnet models has been built and tested in the framework of the R&D program of main superconducting dipole magnets for the Large Hadron Collider project. The se models, designed for a nominal field of 8.3 T at 1.8 K, have been constructed to test the performance of SC coils and to optimise various design options for the full length 15 metre long dipoles. T he models have been extensively equipped with a specially developed mechanical instrumentation, enabling both the control of main assembly parameters - like coil azimuthal and axial pre-load, stress i n the outer shrinking cylinder - and also the monitoring of magnet behaviour during cooling and energising, under the action of electromagnetic forces. The instrumentation used, mainly based on strain gauge transducers, is described and the results of mechanical measurements obtained during power tests of the models are discussed and compared with the design predictions based on Finite Element calc ulations

    Power Test Results of the First LHC Second Generation Superconducting Single Aperture 1m Long Dipole Models

    Get PDF
    Within the LHC magnet research and development programme, a series of single aperture 1m long models of second generation are presently being built and tested at CERN. The main features of these magnets are: five-block, two layer coils wound from 15mm wide graded NbTi cables, enlarged 56mm aperture and all-polyimide insulation. This paper reviews the power test data of magnets tested to date in both supercritical and superfluid helium. The results of the quench training, the initial location and propagation of quenches and their sensitivity to energy extraction are presented and discussed in terms of the design parameters and the aims of this short dipole model test program

    Photoelectrochemical oxidation of glycerol on hematite: thermal effects, in situ FTIR and long-term HPLC product analysis

    Get PDF
    Photoelectrochemical (PEC) oxidation of biomass is a profitable approach to produce hydrogen by substituting the water oxidation reaction in the electrolyzers’ photoanodes. Among the biomass-derived molecules, glycerol is an interesting alternative to water since its standard thermodynamic potential is considerably lower than that of water and because it is widely produced in the biodiesel industry. Herein, we performed a fundamental study of the PEC oxidation of glycerol on hematite. In situ FTIR experiments and long-term electrolysis followed by HPLC analysis revealed C1, C2 and C3 oxidation products showing the low selectivity of the reaction under these conditions. We explained this lack of selectivity by an electrooxidation mechanism involving highly reactive radicals as intermediates. [Figure not available: see fulltext.]

    Single-cell gene network analysis and transcriptional landscape of MYCN-amplified neuroblastoma cell lines

    Get PDF
    Neuroblastoma (NBL) is a pediatric cancer responsible for more than 15% of cancer deaths in children, with 800 new cases each year in the United States alone. Genomic amplification of the MYC oncogene family member MYCN characterizes a subset of high-risk pediatric neuroblastomas. Several cellular models have been implemented to study this disease over the years. Two of these, SK-N-BE-2-C (BE2C) and Kelly, are amongst the most used worldwide as models of MYCN-Amplified human NBL. Here, we provide a transcriptome-wide quantitative measurement of gene expression and transcriptional network activity in BE2C and Kelly cell lines at an unprecedented single-cell resolution. We obtained 1105 Kelly and 962 BE2C unsynchronized cells, with an average number of mapped reads/cell of roughly 38,000. The single-cell data recapitulate gene expression signatures previously generated from bulk RNA-Seq. We highlight low variance for commonly used housekeeping genes between different cells (ACTB, B2M and GAPDH), while showing higher than expected variance for metallothionein transcripts in Kelly cells. The high number of samples, despite the relatively low read coverage of single cells, allowed for robust pathway enrichment analysis and master regulator analysis (MRA), both of which highlight the more mesenchymal nature of BE2C cells as compared to Kelly cells, and the upregulation of TWIST1 and DNAJC1 transcriptional networks. We further defined master regulators at the single cell level and showed that MYCN is not constantly active or expressed within Kelly and BE2C cells, independently of cell cycle phase. The dataset, alongside a detailed and commented programming protocol to analyze it, is fully shared and reusable

    Developing a microbial consortium for removing nutrients in dishwasher wastewater: towards a biofilter for its up-cycling

    Get PDF
    Microbial consortia are effective biofilters to treat wastewaters, allowing for resource recovery and water remediation. To re-use and save water in the domestic cycle, we assembled a suspended biofilm, a ‘biofilter’ to treat dishwasher wastewater. Bacterial monocultures of both photo- and hetero-trophs were assembled in an increasingly complex fashion to test their nutrient stripping capacity. This ‘biofilter’ is the core of an integrated system devoted to re-using and upcycling of reconditioned wastewater, partly in subsequent dishwasher cycles and partly into a vertical garden for plant food cultivation. The biofilter has been assembled based on a strain of the photosynthetic, filamentous cyanobacterium Trichormus variabilis, selected to produce an oxygen evolving scaffold, and three heterotrophic aerobic bacterial isolates coming from the dishwasher wastewater itself: Acinetobacter, Exiguobacterium and Pseudomonas spp. The consortium has been constructed starting with 16 isolates tested one-to-one with T. variabilis and then selecting the heterotrophic microbes up to a final one-to-three consortium, which included two dominant and a rare component of the wastewater community. This consortium thrives in the wastewater much better than T. variabilis alone, efficiently stripping N and P in short time, a pivotal step to the reuse and saving of water in household appliances

    State of the Short Dipole Model Program for the LHC

    Get PDF
    Superconducting single and twin aperture 1-m long dipole magnets are currently being fabricated at CERN at a rate of about one per month in the framework of the short dipole model program for the LHC. The program allows to study performance improvements coming from refinements in design, components and assembly options and to accumulate statistics based on a small-scale production. The experience thus gained provides in turn feedback into the long magnet program in industry. In recent models initial quenching fields above 9 T have been obtained and after a short training the conductor limit at 2 K is reached, resulting in a central bore field exceeding 10 T. The paper describes the features of recent single aperture models, the results obtained during cold tests and the plans to ensure the continuation of a vigorous model program providing input for the fabrication of the main LHC dipoles

    the topography of brain microstructural damage in amyotrophic lateral sclerosis assessed using diffusion tensor mr imaging

    Get PDF
    BACKGROUND AND PURPOSE: ALS leads to macrostructural (ie, cortical atrophy and hyperintensities along the corticospinal tract) and microstructural (ie, gray matter intrinsic damage) central nervous system abnormalities. We used a multimodal voxelwise imaging approach to assess microstructural changes independent of macrostructural volume loss in patients with ALS compared with HCs. MATERIALS AND METHODS: Twenty-three patients with ALS and 14 HCs were studied. Conventional imaging and DTI were performed. Images were processed by using SPM5 to assess measures of gray and white matter atrophy as well as microstructural damage (ie, MD and FA). DTI alterations independent of volume loss were investigated. RESULTS: When we accounted for both gray and white matter atrophy, patients with ALS showed increased MD values in several gray and white matter areas mainly located in the orbitofrontal and frontotemporal regions bilaterally, in the right genu of the corpus callosum, and in the right posterior limb of the internal capsule. When we accounted for white matter volume loss, patients with ALS showed decreased FA along the corticospinal tract bilaterally and in the left inferior frontal lobe relative to HCs. The MD of the orbitofrontal regions bilaterally was associated significantly with disease duration. CONCLUSIONS: In patients with ALS, DTI detects microstructural changes independent of brain tissue loss. The affected regions included both motor and extramotor areas. The extent of ALS-related DTI abnormalities was greater than that disclosed by the volumetric analysis

    Evaluation of Occupational Exoskeletons: A Comprehensive Protocol for Experimental Design and Analysis

    Get PDF
    Featured Application This paper proposes a protocol for researchers, ergonomists, and industrial practitioners to design and carry out well-structured experiments that allow for reliable and valid comparisons between different exoskeleton designs or configurations, considering factors such as user characteristics, task demands, environmental conditions, and subjective user perceptions.Abstract This paper proposes a modular protocol for the designing of experimental studies to analyze exoskeletons used in industrial settings to support manual material handling (MMH). Despite exoskeleton technologies starting to be highly commercialized and present in workplaces, research still lacks a standardized procedure for analyzing the impact of these devices on workers. The protocol presented in this paper outlines a step-by-step procedure, including the parameters to be collected and analyzed in a research study. Moreover, the approach could be easily adapted to meet the specificity of a wide range of exoskeletons. The main novelty of the protocol is thus to support the experimental design and analysis of studies assessing the overall impact of exoskeletons on workers. To implement the protocol, the selected case study concerned a palletizing task involving the MMH of 12 cardboard boxes, weighing 10 kg. The results from physiological signals and pressure insoles show that the protocol is comprehensive and can be utilized by researchers evaluating different occupational exoskeletons for assistance during MMH (both active and passive), with modifications to specific parts based on the type of exoskeleton being assessed or the variables of interest
    • 

    corecore