43 research outputs found
Steady-state and transient-state performance of a biotrickling filter treating chlorobenzene-containing waste gas
Biotrickling filter (BTF) technology was applied for the treatment of waste gas containing a mixture of chlorobenzene and 1,2-dichlorobenzene. An adapted microbial community was immobilised on a structured packing material. The strategy followed was to reach high removal efficiencies at initially low mass loading rates followed by an increase of the latter. This procedure was successful and resulted in a short start-up period of only 2 weeks. A 3-month operation under steady-state conditions showed good performance, with >95% removal efficiency at a mass loading rate of 1,800 g m(-3) day(-1). Dimensionless concentration profiles showed that the chlorobenzenes were simultaneously degraded. Low dissolved organic carbon of 15 mg l(-1) and stoichiometric chloride concentrations in the trickling liquid indicated complete mineralisation of the pollutant. Transient-state experiments with five times higher mass loading rates caused a decrease in the removal efficiency that recovered rapidly once the mass loading rate returned to its original steady-state level. A progressive increase of the mass loading rate in a long-term performance experiment showed that the removal efficiency could be kept stable between 95 and 99% at loads of up to 5,200 g m(-3) day(-1) over several days. Above this mass loading rate, the elimination capacity did not increase any further. These results demonstrated that with a well-adapted inoculum and optimal operation parameters, a BTF system with excellent performance and stability that efficiently removes a mixture of cholorobenzene vapours from air can be obtained
Timing of Favorable Conditions, Competition and Fertility Interact to Govern Recruitment of Invasive Chinese Tallow Tree in Stressful Environments
The rate of new exotic recruitment following removal of adult invaders (reinvasion pressure) influences restoration
outcomes and costs but is highly variable and poorly understood. We hypothesize that broad variation in average
reinvasion pressure of Triadica sebifera (Chinese tallow tree, a major invader) arises from differences among habitats in
spatiotemporal availability of realized recruitment windows. These windows are periods of variable duration long enough to
permit establishment given local environmental conditions. We tested this hypothesis via a greenhouse mesocosm
experiment that quantified how the duration of favorable moisture conditions prior to flood or drought stress (window
duration), competition and nutrient availability influenced Triadica success in high stress environments. Window duration
influenced pre-stress seedling abundance and size, growth during stress and final abundance; it interacted with other
factors to affect final biomass and germination during stress. Stress type and competition impacted final size and biomass,
plus germination, mortality and changes in size during stress. Final abundance also depended on competition and the
interaction of window duration, stress type and competition. Fertilization interacted with competition and stress to
influence biomass and changes in height, respectively, but did not affect Triadica abundance. Overall, longer window
durations promoted Triadica establishment, competition and drought (relative to flood) suppressed establishment, and
fertilization had weak effects. Interactions among factors frequently produced different effects in specific contexts. Results
support our âoutgrow the stressâ hypothesis and show that temporal availability of abiotic windows and factors that
influence growth rates govern Triadica recruitment in stressful environments. These findings suggest that native seed
addition can effectively suppress superior competitors in stressful environments. We also describe environmental scenarios
where specific management methods may be more or less effective. Our results enable better niche-based estimates of
local reinvasion pressure, which can improve restoration efficacy and efficiency by informing site selection and optimal
Management
Evaluating the spatial uncertainty of future land abandonment in a mountain valley (Vicdessos, Pyrenees-France) : insights form model parameterization and experiments
International audienceEuropean mountains are particularly sensitive to climatic disruptions and land use changes. The latter leads to high rates of natural reforestation over the last 50 years. Faced with the challenge of predicting possible impacts on ecosystem services, LUCC models offer new opportunities for land managers to adapt or mitigate their strategies. Assessing the spatial uncertainty of future LUCC is crucial for the defintion of sustainable land use strategies. However, the sources of uncertainty may differ, including the input parameters, the model itself, and the wide range of possible futures. The aim of this paper is to propose a method to assess the probability of occurrence of future LUCC that combines the inherent uncertainty of model parameterization and the ensemble uncertainty of the future based scenarios. For this purpose, we used the Land Change Modeler tool to simulate future LUCC on a study site located in the Pyrenees Mountains (France) and 2 scenarios illustratins 2 land use strategies. The model was parameterized with the same driving factors used for its calibration. The defintion of static vs. dynamic and quantitative vs. qualitative (discretized) driving factors, and their combination resulted in 4 parameterizations. The combination of model outcomes produced maps of spatial uncertainty of future LUCC. This work involves literature to future-based LUCC studies. It goes beyond the uncertainty of simulation models by integrating the unceertainty of the future to provide maps to help decision makers and land managers
Diabetic gastroparesis: Therapeutic options
Gastroparesis is a condition characterized by delayed gastric emptying and the most common known underlying cause is diabetes mellitus. Symptoms include nausea, vomiting, abdominal fullness, and early satiety, which impact to varying degrees on the patientâs quality of life. Symptoms and deficits do not necessarily relate to each other, hence despite significant abnormalities in gastric emptying, some individuals have only minimal symptoms and, conversely, severe symptoms do not always relate to measures of gastric emptying. Prokinetic agents such as metoclopramide, domperidone, and erythromycin enhance gastric motility and have remained the mainstay of treatment for several decades, despite unwanted side effects and numerous drug interactions. Mechanical therapies such as endoscopic pyloric botulinum toxin injection, gastric electrical stimulation, and gastrostomy or jejunostomy are used in intractable diabetic gastroparesis (DG), refractory to prokinetic therapies. Mitemcinal and TZP-101 are novel investigational motilin receptor and ghrelin agonists, respectively, and show promise in the treatment of DG. The aim of this review is to provide an update on prokinetic and mechanical therapies in the treatment of DG
Improvement of acetate production from lactose by growing Clostridium thermolacticum in mixed batch culture
Aims: The objective of this study was to increase the acetate production by Clostridium thermolacticum growing on lactose, available as a renewable resource in the milk and whey permeate from the cheese industry. Methods and Results: Experiments for increased acetate productivity by thermophilic anaerobes grown on lactose were carried out in batch cultures. Lactose at concentration of 30 mmol l(-1) (10 g l(-1)) was completely degraded by Cl. thermolacticum and growth rate was maximal. High concentrations of by-products, ethanol, lactate, hydrogen and carbon dioxide were generated. By using an efficient hydrogenotroph, Methanothermobacter thermoautotrophicus, in a defined thermophilic anaerobic consortium (58degreesC) with Cl. thermolacticum and the acetogenic Moorella thermoautotrophica, the hydrogen partial pressure was dramatically lowered. As a consequence, by-products concentrations were significantly reduced and acetate production was increased. Conclusion: Through efficient in situ hydrogen scavenging in the consortium, the metabolic pattern was modified in favour of acetate production, at the expense of reduced by-products like ethanol. Significance and Impact of the Study: The use of this thermophilic anaerobic consortium opens new opportunities for the efficient valorization of lactose, the main waste from the cheese industry, and production of calcium-magnesium acetate, an environmentally friendly road de-icer
Degradation of industrial organic pollutants. Electrochemical and biological treatment and combined treatment
A review with 21 refs. on the strategy of wastewater treatment in org. chem. industry. Biodegradability tests, toxicity tests, aerobic and anaerobic treatment processes, and electrochem. oxidn. of org. substances are discussed with an example of a pilot plant for the combined electrochem. and biol. wastewater treatment. [on SciFinder (R)