46 research outputs found
Why do axons differ in caliber?
CNS axons differ in diameter (d) by nearly 100-fold (∼0.1-10 μm); therefore, they differ in cross-sectional area (d(2)) and volume by nearly 10,000-fold. If, as found for optic nerve, mitochondrial volume fraction is constant with axon diameter, energy capacity would rise with axon volume, also as d(2). We asked, given constraints on space and energy, what functional requirements set an axon's diameter? Surveying 16 fiber groups spanning nearly the full range of diameters in five species (guinea pig, rat, monkey, locust, octopus), we found the following: (1) thin axons are most numerous; (2) mean firing frequencies, estimated for nine of the identified axon classes, are low for thin fibers and high for thick ones, ranging from ∼1 to >100 Hz; (3) a tract's distribution of fiber diameters, whether narrow or broad, and whether symmetric or skewed, reflects heterogeneity of information rates conveyed by its individual fibers; and (4) mitochondrial volume/axon length rises ≥d(2). To explain the pressure toward thin diameters, we note an established law of diminishing returns: an axon, to double its information rate, must more than double its firing rate. Since diameter is apparently linear with firing rate, doubling information rate would more than quadruple an axon's volume and energy use. Thicker axons may be needed to encode features that cannot be efficiently decoded if their information is spread over several low-rate channels. Thus, information rate may be the main variable that sets axon caliber, with axons constrained to deliver information at the lowest acceptable rate
Elastically driven, intermittent microscopic dynamics in soft solids
Soft solids with tunable mechanical response are at the core of new material
technologies, but a crucial limit for applications is their progressive aging
over time, which dramatically affects their functionalities. The generally
accepted paradigm is that such aging is gradual and its origin is in slower
than exponential microscopic dynamics, akin to the ones in supercooled liquids
or glasses. Nevertheless, time- and space-resolved measurements have provided
contrasting evidence: dynamics faster than exponential, intermittency, and
abrupt structural changes. Here we use 3D computer simulations of a microscopic
model to reveal that the timescales governing stress relaxation respectively
through thermal fluctuations and elastic recovery are key for the aging
dynamics. When thermal fluctuations are too weak, stress heterogeneities
frozen-in upon solidification can still partially relax through elastically
driven fluctuations. Such fluctuations are intermittent, because of strong
correlations that persist over the timescale of experiments or simulations,
leading to faster than exponential dynamics.Comment: 7 pages, Supplementary Information include
Axonal Transmission in the Retina Introduces a Small Dispersion of Relative Timing in the Ganglion Cell Population Response
Background: Visual stimuli elicit action potentials in tens of different retinal ganglion cells. Each ganglion cell type responds with a different latency to a given stimulus, thus transforming the high-dimensional input into a temporal neural code. The timing of the first spikes between different retinal projection neurons cells may further change along axonal transmission. The purpose of this study is to investigate if intraretinal conduction velocity leads to a synchronization or dispersion of the population signal leaving the eye. Methodology/Principal Findings: We 'imaged' the initiation and transmission of light-evoked action potentials along individual axons in the rabbit retina at micron-scale resolution using a high-density multi-transistor array. We measured unimodal conduction velocity distributions (1.3 +/- 0.3 m/sec, mean +/- SD) for axonal populations at all retinal eccentricities with the exception of the central part that contains myelinated axons. The velocity variance within each piece of retina is caused by ganglion cell types that show narrower and slightly different average velocity tuning. Ganglion cells of the same type respond with similar latency to spatially homogenous stimuli and conduct with similar velocity. For ganglion cells of different type intraretinal conduction velocity and response latency to flashed stimuli are negatively correlated, indicating that differences in first spike timing increase (up to 10 msec). Similarly, the analysis of pair-wise correlated activity in response to white-noise stimuli reveals that conduction velocity and response latency are negatively correlated. Conclusion/Significance: Intraretinal conduction does not change the relative spike timing between ganglion cells of the same type but increases spike timing differences among ganglion cells of different type. The fastest retinal ganglion cells therefore act as indicators of new stimuli for postsynaptic neurons. The intraretinal dispersion of the population activity will not be compensated by variability in extraretinal conduction times, estimated from data in the literature
Design of a Trichromatic Cone Array
Cones with peak sensitivity to light at long (L), medium (M) and short (S) wavelengths are unequal in number on the human retina: S cones are rare (<10%) while increasing in fraction from center to periphery, and the L/M cone proportions are highly variable between individuals. What optical properties of the eye, and statistical properties of natural scenes, might drive this organization? We found that the spatial-chromatic structure of natural scenes was largely symmetric between the L, M and S sensitivity bands. Given this symmetry, short wavelength attenuation by ocular media gave L/M cones a modest signal-to-noise advantage, which was amplified, especially in the denser central retina, by long-wavelength accommodation of the lens. Meanwhile, total information represented by the cone mosaic remained relatively insensitive to L/M proportions. Thus, the observed cone array design along with a long-wavelength accommodated lens provides a selective advantage: it is maximally informative
Adrenal myelolipoma: a comprehensive review
INTRODUCTION: Adrenal myelolipoma is an invariably benign neoplasm of the adrenal gland that is the second most common primary adrenal incidentaloma following adrenocortical adenomas. It is composed of elements of adipose tissue and extramedullary hematopoiesis. Hypotheses on stem cells and hormonal factors have been formulated regarding its pathogenesis that is still obscure. Despite its benign behavior, adrenal myelolipoma is clinically relevant as it might cause significant difficulties in the differential diagnosis of adrenal tumors. METHODS: We have reviewed 420 cases reported between 1957 and 2017 on adrenal myelolipoma retrieved from PubMed and Scopus databases and also 20 of our case series to provide a comprehensive analysis of their pathology, epidemiological and clinical features. RESULTS AND CONCLUSIONS: The average age for its diagnosis was 51 years, and no gender difference was observed. The average size of tumors was 10.2 cm. Congenital adrenal hyperplasia was associated to 10% of all cases analyzed, while other adrenal hypersecretory disorders (cortisol, aldosterone) were found in 7.5% of cases. Computed tomography and magnetic resonance imaging can be reliably used for its differential diagnosis. If the diagnosis of an adrenal myelolipoma is unambiguous, and no associated symptoms or hormonal activity are established, surgical intervention is usually not necessary
Clinical effectiveness of primary prevention implantable cardioverter-defibrillators: results of the EU-CERT-ICD controlled multicentre cohort study
Aims
The EUropean Comparative Effectiveness Research to Assess the Use of Primary ProphylacTic Implantable Cardioverter-Defibrillators (EU-CERT-ICD), a prospective investigator-initiated, controlled cohort study, was conducted in 44 centres and 15 European countries. It aimed to assess current clinical effectiveness of primary prevention ICD therapy.
Methods and results
We recruited 2327 patients with ischaemic cardiomyopathy (ICM) or dilated cardiomyopathy (DCM) and guideline indications for prophylactic ICD implantation. Primary endpoint was all-cause mortality. Clinical characteristics, medications, resting, and 12-lead Holter electrocardiograms (ECGs) were documented at enrolment baseline. Baseline and follow-up (FU) data from 2247 patients were analysable, 1516 patients before first ICD implantation (ICD group) and 731 patients without ICD serving as controls. Multivariable models and propensity scoring for adjustment were used to compare the two groups for mortality. During mean FU of 2.4 ± 1.1 years, 342 deaths occurred (6.3%/years annualized mortality, 5.6%/years in the ICD group vs. 9.2%/years in controls), favouring ICD treatment [unadjusted hazard ratio (HR) 0.682, 95% confidence interval (CI) 0.537–0.865, P = 0.0016]. Multivariable mortality predictors included age, left ventricular ejection fraction (LVEF), New York Heart Association class <III, and chronic obstructive pulmonary disease. Adjusted mortality associated with ICD vs. control was 27% lower (HR 0.731, 95% CI 0.569–0.938, P = 0.0140). Subgroup analyses indicated no ICD benefit in diabetics (adjusted HR = 0.945, P = 0.7797, P for interaction = 0.0887) or those aged ≥75 years (adjusted HR 1.063, P = 0.8206, P for interaction = 0.0902).
Conclusion
In contemporary ICM/DCM patients (LVEF ≤35%, narrow QRS), primary prophylactic ICD treatment was associated with a 27% lower mortality after adjustment. There appear to be patients with less survival advantage, such as older patients or diabetics
Liquid biopsy for the assessment of adrenal cancer heterogeneity: where do we stand?
AbstractAlmost 10 years have passed since the first attempts of liquid biopsy aimed at the characterisation of tumor cells present in the bloodstream from a regular sample of peripheral blood were performed. Liquid biopsy has been used to characterise tumor heterogeneity in various types of solid tumors including adrenocortical carcinoma. The development of molecular biology, genetics, and methodological advances such as digital PCR and next-generation sequencing allowed us to use besides circulating tumor cells a variety of circulating cell-free nucleic acids, DNAs, RNAs and microRNAs secreted by tumors into blood and other body fluids as specific molecular markers. These markers are used for diagnosis, to check tumor development, selecting efficient therapies, therapy monitoring and even possess prognostic power. In adrenocortical carcinoma, there are some studies reporting analysis of circulating tumor cells, circulating cell free DNA and microRNAs for assessing tumor heterogeneity. Among microRNAs, hsa-miR-483-5p seems to be the most important player. Combined with other microRNAs like hsa-miR-195, their expression correlates with recurrence-free survival. Most studies support the applicability of liquid biopsy for assessing temporal tumor heterogeneity (i.e. tumor progression) in adrenocortical cancer. In this mini-review, the available findings of liquid biopsy for assessing tumor heterogeneity in adrenocortical cancer are presented.</jats:p
Non-Coding RNAs in Adrenocortical Cancer: From Pathogenesis to Diagnosis
Non-coding RNA molecules including microRNAs and long non-coding RNAs (lncRNA) have been implicated in the pathogenesis of several tumors and numerous data support their applicability in diagnosis as well. Despite recent advances, the pathogenesis of adrenocortical cancer still remains elusive and there are no reliable blood-borne markers of adrenocortical malignancy, either. Several findings show the potential applicability of microRNAs as biomarkers of malignancy and prognosis, and there are some data on lncRNA as well. In this review, we present a synopsis on the potential relevance of non-coding RNA molecules in adrenocortical pathogenesis and their applicability in diagnosis from tissue and blood.</jats:p
