7,148 research outputs found

    Ground state fidelity from tensor network representations

    Full text link
    For any D-dimensional quantum lattice system, the fidelity between two ground state many-body wave functions is mapped onto the partition function of a D-dimensional classical statistical vertex lattice model with the same lattice geometry. The fidelity per lattice site, analogous to the free energy per site, is well-defined in the thermodynamic limit and can be used to characterize the phase diagram of the model. We explain how to compute the fidelity per site in the context of tensor network algorithms, and demonstrate the approach by analyzing the two-dimensional quantum Ising model with transverse and parallel magnetic fields.Comment: 4 pages, 2 figures. Published version in Physical Review Letter

    Eternity and the cosmological constant

    Get PDF
    The purpose of this paper is to analyze the stability of interacting matter in the presence of a cosmological constant. Using an approach based on the heat equation, no imaginary part is found for the effective potential in the presence of a fixed background, which is the n-dimensional sphere or else an analytical continuation thereof, which is explored in some detail.Comment: 45 pages, 6 figure

    Quantifying Quantum Correlations in Fermionic Systems using Witness Operators

    Full text link
    We present a method to quantify quantum correlations in arbitrary systems of indistinguishable fermions using witness operators. The method associates the problem of finding the optimal entan- glement witness of a state with a class of problems known as semidefinite programs (SDPs), which can be solved efficiently with arbitrary accuracy. Based on these optimal witnesses, we introduce a measure of quantum correlations which has an interpretation analogous to the Generalized Robust- ness of entanglement. We also extend the notion of quantum discord to the case of indistinguishable fermions, and propose a geometric quantifier, which is compared to our entanglement measure. Our numerical results show a remarkable equivalence between the proposed Generalized Robustness and the Schliemann concurrence, which are equal for pure states. For mixed states, the Schliemann con- currence presents itself as an upper bound for the Generalized Robustness. The quantum discord is also found to be an upper bound for the entanglement.Comment: 7 pages, 6 figures, Accepted for publication in Quantum Information Processin

    Association of patients' geographic origins with viral hepatitis co-infection patterns, Spain

    Get PDF
    To determine if hepatitis C virus seropositivity and active hepatitis B virus infection in HIV-positive patients vary with patients' geographic origins, we studied co-infections in HIV-seropositive adults. Active hepatitis B infection was more prevalent in persons from Africa, and hepatitis C seropositivity was more common in persons from eastern Europe.Ministerio de Sanidad. Instituto de Salud Carlos II

    Tensor network states and geometry

    Full text link
    Tensor network states are used to approximate ground states of local Hamiltonians on a lattice in D spatial dimensions. Different types of tensor network states can be seen to generate different geometries. Matrix product states (MPS) in D=1 dimensions, as well as projected entangled pair states (PEPS) in D>1 dimensions, reproduce the D-dimensional physical geometry of the lattice model; in contrast, the multi-scale entanglement renormalization ansatz (MERA) generates a (D+1)-dimensional holographic geometry. Here we focus on homogeneous tensor networks, where all the tensors in the network are copies of the same tensor, and argue that certain structural properties of the resulting many-body states are preconditioned by the geometry of the tensor network and are therefore largely independent of the choice of variational parameters. Indeed, the asymptotic decay of correlations in homogeneous MPS and MERA for D=1 systems is seen to be determined by the structure of geodesics in the physical and holographic geometries, respectively; whereas the asymptotic scaling of entanglement entropy is seen to always obey a simple boundary law -- that is, again in the relevant geometry. This geometrical interpretation offers a simple and unifying framework to understand the structural properties of, and helps clarify the relation between, different tensor network states. In addition, it has recently motivated the branching MERA, a generalization of the MERA capable of reproducing violations of the entropic boundary law in D>1 dimensions.Comment: 18 pages, 18 figure

    Exponential Decay of Correlations Implies Area Law

    Full text link
    We prove that a finite correlation length, i.e. exponential decay of correlations, implies an area law for the entanglement entropy of quantum states defined on a line. The entropy bound is exponential in the correlation length of the state, thus reproducing as a particular case Hastings proof of an area law for groundstates of 1D gapped Hamiltonians. As a consequence, we show that 1D quantum states with exponential decay of correlations have an efficient classical approximate description as a matrix product state of polynomial bond dimension, thus giving an equivalence between injective matrix product states and states with a finite correlation length. The result can be seen as a rigorous justification, in one dimension, of the intuition that states with exponential decay of correlations, usually associated with non-critical phases of matter, are simple to describe. It also has implications for quantum computing: It shows that unless a pure state quantum computation involves states with long-range correlations, decaying at most algebraically with the distance, it can be efficiently simulated classically. The proof relies on several previous tools from quantum information theory - including entanglement distillation protocols achieving the hashing bound, properties of single-shot smooth entropies, and the quantum substate theorem - and also on some newly developed ones. In particular we derive a new bound on correlations established by local random measurements, and we give a generalization to the max-entropy of a result of Hastings concerning the saturation of mutual information in multiparticle systems. The proof can also be interpreted as providing a limitation on the phenomenon of data hiding in quantum states.Comment: 35 pages, 6 figures; v2 minor corrections; v3 published versio

    The nuclear starburst in Arp 299-A: From the 5.0 GHz VLBI radio light-curves to its core-collapse supernova rate

    Full text link
    The nuclear region of the Luminous Infra-red Galaxy Arp 299-A hosts a recent (10\simeq 10 Myr), intense burst of massive star formation which is expected to lead to numerous core-collapse supernovae (CCSNe). Previous VLBI observations, carried out with the EVN at 5.0 GHz and with the VLBA at 2.3 and 8.4 GHz, resulted in the detection of a large number of compact, bright, non-thermal sources in a region \lsim150 pc in size. We aim at establishing the nature of all non-thermal, compact components in Arp 299-A, as well as estimating its core-collapse supernova rate. We use multi-epoch European VLBI Network (EVN) observations taken at 5.0 GHz to image with milliarcsecond resolution the compact radio sources in the nuclear region of Arp 299-A. We also use one single-epoch 5.0 GHz Multi-Element Radio Linked Interferometer Network (MERLIN) observation to image the extended emission in which the compact radio sources --traced by our EVN observations-- are embedded. Twenty-six compact sources are detected, 8 of them are new objects not previously detected. The properties of all detected objects are consistent with them being a mixed population of CCSNe and SNRs. We find clear evidence for at least two new CCSNe, implying a lower limit to the CCSN rate of \nu_{\rm SN}\gsim0.80 SN/yr indicating that the bulk of the current star formation in Arp 299-A is taking place in the innermost 150\sim 150 pc. Our MERLIN observations trace a region of diffuse, extended emission which is co-spatial to the region where all compact sources are found. From this diffuse, non-thermal radio emission we obtain an independent estimate for the core-collapse supernova rate, which is in the range νSN=0.40\nu_{\rm SN}=0.40 - 0.65 SN/yr, roughly in agreement with previous estimates and our direct estimate of the CCSN rate from the compact radio emission.Comment: 13 pages, 5 figures, accepted for publication on Astronomy & Astrophysic
    corecore