4,450 research outputs found
Thinking Adaptive: Towards a Behaviours Virtual
In this paper we name some of the advantages of
virtual laboratories; and propose that a Behaviours
Virtual Laboratory should be useful for both biologists
and AI researchers, offering a new perspective for
understanding adaptive behaviour. We present our
development of a Behaviours Virtual Laboratory, which
at this stage is focused in action selection, and show
some experiments to illustrate the properties of our
proposal, which can be accessed via Internet
Valuation of a new entrant in an oligopolistic market, including its option to abandon: A real-life case
The purpose of this paper is to increase current empirical evidence on the relevance of real options for explaining firm investment decisions in oligopolistic markets. We study an actual investment case in the Spanish mobile telephony industry, the entrant in the market of a new operator, Yoigo. We analyze the option to abandon in order to show the relevance of the possibility of selling the company in an oligopolistic market where competitors are not allowed free entrance. The NPV (net present value) of the new entrant is calculated as a starting point. Then, based on the general approach proposed by Copeland and Antikarov (2001), a binomial tree is used to model managerial flexibility in discrete time periods, and value the option to abandon. The strike price of the option is calculated based on incremental EBITDA margins due to selling customers or merging with a competitor
4-terminal tandem photovoltaic cell using two layers of PTB7:PC71BM for optimal light absorption
This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS applied materials and interfaces, copyright © American Chemical Society, after peer review and technical editing by the publisher and may be found at http://dx.doi.org/10.1021/acsami.5b04537A 4-terminal architecture is proposed in which two thin active layers (<100 nm) of PTB7:PC71BM are deposited on a two-sided ITO covered glass substrate. By modeling the electric field distribution inside the multilayer structure and applying an inverse solving problem procedure, we designed an optimal device architecture tailored to extract the highest photocurrent possible. By adopting such a 4-terminal configuration, we numerically demonstrated that even when the two subcells use identical absorber materials, the performance of the 4-terminal device may overcome the performance of the best equivalent single-junction device. In an experimental implementation of such a 4-terminal device, we demonstrate the viability of the approach and find a very good match with the trend of the numerical predictions.Peer ReviewedPostprint (author's final draft
Optimization of the Multi-Spectral Euclidean Distance Calculation for FPGA-based Spaceborne Systems
Due to the high quantity of operations that spaceborne processing systems must carry out in space, new methodologies and techniques are being presented as good alternatives in order to free the main processor from work and improve the overall performance. These include the development of ancillary dedicated hardware circuits that carry out the more redundant and computationally expensive operations in a faster way, leaving the main processor free to carry out other tasks while waiting for the result. One of these devices is SpaceCube, a FPGA-based system designed by NASA. The opportunity to use FPGA reconfigurable architectures in space allows not only the optimization of the mission operations with hardware-level solutions, but also the ability to create new and improved versions of the circuits, including error corrections, once the satellite is already in orbit. In this work, we propose the optimization of a common operation in remote sensing: the Multi-Spectral Euclidean Distance calculation. For that, two different hardware architectures have been designed and implemented in a Xilinx Virtex-5 FPGA, the same model of FPGAs used by SpaceCube. Previous results have shown that the communications between the embedded processor and the circuit create a bottleneck that affects the overall performance in a negative way. In order to avoid this, advanced methods including memory sharing, Native Port Interface (NPI) connections and Data Burst Transfers have been used
Efficiency of evolutionary algorithms in water network pipe sizing
© 2015, Springer Science+Business Media Dordrecht. The pipe sizing of water networks via evolutionary algorithms is of great interest because it allows the selection of alternative economical solutions that meet a set of design requirements. However, available evolutionary methods are numerous, and methodologies to compare the performance of these methods beyond obtaining a minimal solution for a given problem are currently lacking. A methodology to compare algorithms based on an efficiency rate (E) is presented here and applied to the pipe-sizing problem of four medium-sized benchmark networks (Hanoi, New York Tunnel, GoYang and R-9 Joao Pessoa). E numerically determines the performance of a given algorithm while also considering the quality of the obtained solution and the required computational effort. From the wide range of available evolutionary algorithms, four algorithms were selected to implement the methodology: a PseudoGenetic Algorithm (PGA), Particle Swarm Optimization (PSO), a Harmony Search and a modified Shuffled Frog Leaping Algorithm (SFLA). After more than 500,000 simulations, a statistical analysis was performed based on the specific parameters each algorithm requires to operate, and finally, E was analyzed for each network and algorithm. The efficiency measure indicated that PGA is the most efficient algorithm for problems of greater complexity and that HS is the most efficient algorithm for less complex problems. However, the main contribution of this work is that the proposed efficiency ratio provides a neutral strategy to compare optimization algorithms and may be useful in the future to select the most appropriate algorithm for different types of optimization problems
Electro- and Photoinduced Interfacial Charge Transfers in Nanocrystalline Mesoporous TiO2 and TiO2/Iron Porphyrin Sensitized Films under CO2 Reduction Catalysis
Electro-and photochemical CO2 reduction (CO2R) is the quintessence of modern-day sustainable research. We report our studies on the electro-and photoinduced interfacial charge transfer occurring in a nanocrystalline mesoporous TiO2 film and two TiO2/iron porphyrin hybrid films (meso-aryl-and beta-pyrrole-substituted porphyrins, respectively) under CO2R conditions. We used transient absorption spectroscopy (TAS) to demonstrate that, under 355 nm laser excitation and an applied voltage bias (0 to -0.8 V vs Ag/AgCl), the TiO2 film exhibited a diminution in the transient absorption (at -0.5 V by 35%), as well as a reduction of the lifetime of the photogenerated electrons (at -0.5 V by 50%) when the experiments were conducted under a CO2 atmosphere changing from inert N2. The TiO2/iron porphyrin films showed faster charge recombination kinetics, featuring 100-fold faster transient signal decays than that of the TiO2 film. The electro-, photo-, and photoelectrochemical CO2R performance of the TiO2 and TiO2/iron porphyrin films are evaluated within the bias range of -0.5 to -1.8 V vs Ag/AgCl. The bare TiO2 film produced CO and CH4 as well as H2, depending on the applied voltage bias. In contrast, the TiO2/iron porphyrin films showed the exclusive formation of CO (100% selectivity) under identical conditions. During the CO2R, a gain in the overpotential values is obtained under light irradiation conditions. This finding was indicative of a direct transfer of the photogenerated electrons from the film to absorbed CO2 molecules and an observed decrease in the decay of the TAS signals. In the TiO2/iron porphyrin films, we identified the interfacial charge recombination processes between the oxidized iron porphyrin and the electrons of the TiO2 conduction band. These competitive processes are considered to be responsible for the diminution of direct charge transfer between the film and the adsorbed CO2 molecules, explaining the moderate performances of the hybrid films for the CO2R
- …