3,869 research outputs found

    Game State and Action Abstracting Monte Carlo Tree Search for General Strategy Game-Playing

    Get PDF
    When implementing intelligent agents for strategy games, we observe that search-based methods struggle with the complexity of such games. To tackle this problem, we propose a new variant of Monte Carlo Tree Search which can incorporate action and game state abstractions. Focusing on the latter, we developed a game state encoding for turn-based strategy games that allows for a flexible abstraction. Using an optimization procedure, we optimize the agent's action and game state abstraction to maximize its performance against a rule-based agent. Furthermore, we compare different combinations of abstractions and their impact on the agent's performance based on the Kill the King game of the Stratega framework. Our results show that action abstractions have improved the performance of our agent considerably. Contrary, game state abstractions have not shown much impact. While these results may be limited to the tested game, they are in line with previous research on abstractions of simple Markov Decision Processes. The higher complexity of strategy games may require more intricate methods, such as hierarchical or time-based abstractions, to further improve the agent's performance

    Stability of the nonlinear dynamics of an optically injected VCSEL

    Get PDF
    Automated protocols have been developed to characterize time series data in terms of stability. These techniques are applied to the output power time series of an optically injected vertical cavity surface emitting laser (VCSEL) subject to varying injection strength and optical frequency detuning between master and slave lasers. Dynamic maps, generated from high resolution, computer controlled experiments, identify regions of dynamic instability in the parameter space. © 2012 Optical Society of America

    Generating Diverse and Competitive Play-Styles for Strategy Games

    Get PDF
    Designing agents that are able to achieve different play-styles while maintaining a competitive level of play is a difficult task, especially for games for which the research community has not found super-human performance yet, like strategy games. These require the AI to deal with large action spaces, long-term planning and partial observability, among other well-known factors that make decision-making a hard problem. On top of this, achieving distinct play-styles using a general algorithm without reducing playing strength is not trivial. In this paper, we propose Portfolio Monte Carlo Tree Search with Progressive Unpruning for playing a turn-based strategy game (Tribes) and show how it can be parameterized so a quality-diversity algorithm (MAP-Elites) is used to achieve different play-styles while keeping a competitive level of play. Our results show that this algorithm is capable of achieving these goals even for an extensive collection of game levels beyond those used for training

    Intraoperative goal directed hemodynamic therapy in noncardiac surgery: a systematic review and meta-analysis

    Get PDF
    Background: The goal directed hemodynamic therapy is an approach focused on the use of cardiac output and related parameters as end-points for fluids and drugs to optimize tissue perfusion and oxygen delivery. Primary aim: To determine the effects of intraoperative goal directed hemodynamic therapy on postoperative complications rates. Methods: A meta-analysis was carried out of the effects of goal directed hemodynamic therapy in adult noncardiac surgery on postoperative complications and mortality using Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology. A systematic search was performed in Medline PubMed, Embase, and the Cochrane Library (last update, October 2014). Inclusion criteria were randomized clinical trials in which intraoperative goal directed hemodynamic therapy was compared to conventional fluid management in noncardiac surgery. Exclusion criteria were trauma and pediatric surgery studies and that using pulmonary artery catheter. End-points were postoperative complications (primary) and mortality (secondary). Those studies that fulfilled the entry criteria were examined in full and subjected to quantifiable analysis, predefined subgroup analysis (stratified by type of monitor, therapy, and hemodynamic goal), and predefined sensitivity analysis. Results: 51 RCTs were initially identified, 24 fulfilling the inclusion criteria. 5 randomized clinical trials were added by manual search, resulting in 29 randomized clinical trials in the final analysis, including 2654 patients. A significant reduction in complications for goal directed hemodynamic therapy was observed (RR: 0.70, 95% CI: 0.62-0.79, p < 0.001). No significant decrease in mortality was achieved (RR: 0.76, 95% CI: 0.45-1.28, p = 0.30). Quality sensitive analyses confirmed the main overall results. Conclusions: Intraoperative goal directed hemodynamic therapy with minimally invasive monitoring decreases postoperative complications in noncardiac surgery, although it was not able to show a significant decrease in mortality rate

    SEOM clinical guidelines on nutrition in cancer patients (2018)

    Get PDF
    Nutritional deficiency is a common medical problem that affects 15-40% of cancer patients. It negatively impacts their quality of life and can compromise treatment completion. Oncological therapies, such as surgery, radiation therapy, and drug therapies are improving survival rates. However, all these treatments can play a role in the development of malnutrition and/or metabolic alterations in cancer patients, induced by the tumor or by its treatment. Nutritional assessment of cancer patients is necessary at the time of diagnosis and throughout treatment, so as to detect nutritional deficiencies. The Patient-Generated Subjective Global Assessment method is the most widely used tool that also evaluates nutritional requirements. In this guideline, we will review the indications of nutritional interventions as well as artificial nutrition in general and according to the type of treatment (radiotherapy, surgery, or systemic therapy), or palliative care. Likewise, pharmacological agents and pharmaconutrients will be reviewed in addition to the role of regular physical activity

    CMS Connect

    Get PDF
    The CMS experiment collects and analyzes large amounts of data coming from high energy particle collisions produced by the Large Hadron Collider (LHC) at CERN. This involves a huge amount of real and simulated data processing that needs to be handled in batch-oriented platforms. The CMS Global Pool of computing resources provide +100K dedicated CPU cores and another 50K to 100K CPU cores from opportunistic resources for these kind of tasks and even though production and event processing analysis workflows are already managed by existing tools, there is still a lack of support to submit final stage condor-like analysis jobs familiar to Tier-3 or local Computing Facilities users into these distributed resources in an integrated (with other CMS services) and friendly way. CMS Connect is a set of computing tools and services designed to augment existing services in the CMS Physics community focusing on these kind of condor analysis jobs. It is based on the CI-Connect platform developed by the Open Science Grid and uses the CMS GlideInWMS infrastructure to transparently plug CMS global grid resources into a virtual pool accessed via a single submission machine. This paper describes the specific developments and deployment of CMS Connect beyond the CI-Connect platform in order to integrate the service with CMS specific needs, including specific Site submission, accounting of jobs and automated reporting to standard CMS monitoring resources in an effortless way to their users

    SARS-CoV-2 ORF8 accessory protein is a virulence factor

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes six accessory proteins (3a, 6, 7a, 7b, 8, and 9b) for which limited information is available on their role in pathogenesis. We showed that the deletion of open reading frames (ORFs) 6, 7a, or 7b individually did not significantly impact viral pathogenicity in humanized K18-hACE2 transgenic mice. In contrast, the deletion of ORF8 partially attenuated SARS-CoV-2, resulting in reduced lung pathology and 40% less mortality, indicating that ORF8 is a critical determinant of SARS-CoV-2 pathogenesis. Attenuation of SARS-CoV-2-∆8 was not associated with a significant decrease in replication either in the lungs of mice or in organoid-derived human airway cells. An increase in the interferon signaling at early times post-infection (1 dpi) in the lungs of mice and a decrease in the pro-inflammatory and interferon response at late times post-infection, both in the lungs of mice (6 dpi) and in organoid-derived human airway cells [72 hours post-infection (hpi)], were observed. The early, but not prolonged, interferon response along with the lower inflammatory response could explain the partial attenuation of SARS-CoV-∆8. The presence of ORF8 in SARS-CoV-2 was associated with an increase in the number of macrophages in the lungs of mice. In addition, the supernatant of SARS-CoV-2-WT (wild-type)-infected organoid-derived cells enhanced the activation of macrophages as compared to SARS-CoV-2-∆8-infected cells. These results show that ORF8 is a virulence factor involved in inflammation that could be targeted in COVID-19 therapies. IMPORTANCE The relevance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ORF8 in the pathogenesis of COVID-19 is unclear. Virus natural isolates with deletions in ORF8 were associated with wild milder disease, suggesting that ORF8 might contribute to SARS-CoV-2 virulence. This manuscript shows that ORF8 is involved in inflammation and in the activation of macrophages in two experimental systems: humanized K18-hACE2 transgenic mice and organoid-derived human airway cells. These results identify ORF8 protein as a potential target for COVID-19 therapies.</p

    SARS-CoV-2 ORF8 accessory protein is a virulence factor

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes six accessory proteins (3a, 6, 7a, 7b, 8, and 9b) for which limited information is available on their role in pathogenesis. We showed that the deletion of open reading frames (ORFs) 6, 7a, or 7b individually did not significantly impact viral pathogenicity in humanized K18-hACE2 transgenic mice. In contrast, the deletion of ORF8 partially attenuated SARS-CoV-2, resulting in reduced lung pathology and 40% less mortality, indicating that ORF8 is a critical determinant of SARS-CoV-2 pathogenesis. Attenuation of SARS-CoV-2-∆8 was not associated with a significant decrease in replication either in the lungs of mice or in organoid-derived human airway cells. An increase in the interferon signaling at early times post-infection (1 dpi) in the lungs of mice and a decrease in the pro-inflammatory and interferon response at late times post-infection, both in the lungs of mice (6 dpi) and in organoid-derived human airway cells [72 hours post-infection (hpi)], were observed. The early, but not prolonged, interferon response along with the lower inflammatory response could explain the partial attenuation of SARS-CoV-∆8. The presence of ORF8 in SARS-CoV-2 was associated with an increase in the number of macrophages in the lungs of mice. In addition, the supernatant of SARS-CoV-2-WT (wild-type)-infected organoid-derived cells enhanced the activation of macrophages as compared to SARS-CoV-2-∆8-infected cells. These results show that ORF8 is a virulence factor involved in inflammation that could be targeted in COVID-19 therapies. IMPORTANCE The relevance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ORF8 in the pathogenesis of COVID-19 is unclear. Virus natural isolates with deletions in ORF8 were associated with wild milder disease, suggesting that ORF8 might contribute to SARS-CoV-2 virulence. This manuscript shows that ORF8 is involved in inflammation and in the activation of macrophages in two experimental systems: humanized K18-hACE2 transgenic mice and organoid-derived human airway cells. These results identify ORF8 protein as a potential target for COVID-19 therapies.</p

    Direct analysis of volatile organic compounds in foods by headspace extraction atmospheric pressure chemical ionisation mass spectrometry

    Get PDF
    Rationale The rapid screening of volatile organic compounds (VOCs) by direct analysis has potential applications in the areas of food and flavour science. Currently the technique of choice for VOC analysis is gas chromatography-mass spectrometry (GC/MS). However, the long chromatographic run times and elaborate sample preparation associated with this technique has led a movement towards direct analysis techniques, such as selected ion flow tube mass spectrometry (SIFT-MS), proton transfer reaction mass spectrometry (PTR-MS) and electronic noses. The work presented here describes the design and construction of a Venturi jet-pump based modification for a compact mass spectrometer which enables the direct introduction of volatiles for qualitative and quantitative analysis. Methods Volatile organic compounds were extracted from the headspace of heated vials into the atmospheric pressure chemical ionization source of a quadrupole mass spectrometer using a Venturi pump. Samples were analysed directly with no prior sample preparation. Principal component analysis was used to differentiate between different classes of samples. Results The interface is shown to able to routinely detect problem analytes such as fatty acids and biogenic amines without the requirement of a derivatisation step, and is shown to be able to discriminate between four different varieties of cheese with good intra and inter-day reproducibility using an unsupervised principal component analysis model. Quantitative analysis is demonstrated using indole standards with limits of detection and quantification of 0.395 µg/ml and 1.316 µg/ml respectively, and then applied to measure indole in aged pork samples. Conclusions The methodology described has shown to be able to routinely detect highly reactive analytes such as volatile fatty acids and diamines without the need for a derivatisation step or lengthy chromatographic separations. The capability of the system is demonstrated by discriminating between different varieties of cheese and monitoring the spoilage of meats
    • …
    corecore